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Part 1: LBM Theorie

® Introduction
- classification
- top-down versus bottom-up
= development
- cellular automata
- HPP, FHP and LGA
® From LGA to LBA/LBM
- comparison
® LBM in detail
- from Boltzmann to Navier Stokes
- liskrete Boltzmann equation
- lattice BGK method
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Part 2: LBM in practice
®= Lattice Boltzmann algorithm
= Boundary Conditions

* Implementation
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Part 3: LBM - modeling of complex fluids
Prof. Manfred Krafczyk, TU Braunschweig

Tuesday, 22.5.07
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Part 4: LBM - Parallel and HPC issues

Dr. Gerhard Wellein, RRZE Erlangen,
Dr. Peter Lammers, RUS Stuttgart

Thomas Zeiser, RRZE Erlangen

Wednesday, 23.5.07
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partial differential equations
e.g. Navier-Stokes

top-down

discretisation
- truncation error
- conservation

bottom-up

multi-scale analysis

algebraic
equation

discrete model
LGA or LBM

top-down vs. bottom-up
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d,p+9, pu, =0 Balance of
! I, (X, 1) = puu ; + 0, (X,1) - Mass
azp“i"'axjﬂij =0 G =—pb +1 - Momentum
dpetd E, =0 7 T - Energy

Boltzmann equation
d.f+cd, f+Ka f=0(f) - two particle collisions .
- molecular chaos hypothesis
- external forces // collisions

g "o Classical mechanics
ya - Hamiltons equation
- Liouville equation

AN
O o o~
Vol
/ \o N Molecular Dynamics methods
© Direct Simulation Monte Carlo

Classification
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Ensemble average

Continuum
Chapman-Enskog Makro. P, i,V conservation egs.
in discrete system ovel e.g. Navier-Stokes
Meso- Ensemble average
level Chapman-Enskog
d o
lattice-gas Mikro- 0 /o/ =Boltzmann

equation

level / equation
\o’ O~

abstraction

Classification
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= cellular automata (CA)

- idealized physical system
- state defined at discrete times and locations
-finite levels of discrete states
- simultaneous update of state variables in discrete time steps
- deterministic and homogeneous rules of update
- rules depend on neighborhood states

Neumann Moore

cellular automata
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= |attice gas automata

= origin: Hardy, de Pazzi und Pomeau (1976) n Nn+1
- Cartesian grid
- propagation along grid links — o o
4 directions corresponding to

4 discrete states
- max. 1 bit each direction each node

- simple collision rules o 9 —

,no collision“
,head on collision”

|
»transparent collision“ %
|

cellular automata: HPP
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= example HPP LGA - Chopard (1996)

expansion

after reversing
time step

cellular automata: HPP "
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two dimensional Lattice-Gas Automata
FHP - Frisch, Hasslacher, Pomeau

n,(t+7,x+7c,)—n,(t,X)=A,(n,), =0.6

........................................

1. Step: Propagation Fluid- Particle

2.Step:  Collision Partikel / Particle
Particle / Wall

3. Step:  Ensemble Average — Collide

Pressure, density, fluxes, ...
Density: pP= Zfa
o
Massflux: puZanfa
o

cellular automata: LGA FHP -
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= Relation to macroscopic magnitudes

0 ooV =—1vp +vau
o,

p=cp
g(p)  Nonlinear scaling term

cellular automata: LGA FHP "
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Lattice-Gas Automata — some properties

© guarantees conservation principles at micro-level

© quite simple algorithm

© only Boolean operations, no truncation error, no error propagation
© unconditionally stable, though explicit in time

@ solution is noisy due to averaging in finite ensemble

@ viscosity hard to control and prescribed by collision model
@ nonlinear scaling term in advection term is unphysical

@ no chance for “healing”, just symptomatic treatment

= lattice-Boltzmann method (McNamara and Zanetti)

cellular automata "
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From lattice-Gas to lattice-Boltzmann

lattice Gas

lattice Boltzmann

= diskrete (Boolsche)
states

1y (X,1)

= collision rules

= unconditionally stable

® continuous
distribution functions

= relaxation term

= conditionally stable

LGA and LBA
15
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= Boltzmann equation

atf+caxf+Kacf:Q(f)

z

From Boltzmann to NS equation n
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= Boltzmann equation

0 f +¢d f+ Ko ./ =0(f) f=rtxc)
® |nvariants
v, = (m,me,imc?)

= Moments of distribution functions

J.c f mdc = p(t,x)
I fmede = pu(t,x)
I f%mczdc = pe(t,x)

From Boltzmann to NS equation .
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= Boltzmann equation

O f +eo f + Ko ./ =0(f)  f=f(txc)

= |nvariants of collision term

_[ O(fvi(c)de=0, y; = (m,mc,%mcz)

From Boltzmann to NS equation "
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= Integration of Boltzmann equation

[ 1@,/ +cdf)de=0

Wo=m’ d,p+0d,pu=0 8tp+axjpuj:0
l//l,,,3=mc2 atpu+axﬂ=0 atpul-+8xj]7ij:0
Wa=ime®: 9 pe+d E=0 0,pe+d, £, =0

1T, (x,1) =mjccicjfdc E;(x,1) =%mLcl-c2fdc

From Boltzmann to NS equation "
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= Decomposition of the velocity ¢, =u, +w,

I, (x,t) = puu, +pIcwiwjfdc

0; =po,; +7,
= Maxwell distribution (equilibrium)

P

= “Macrosopic” momentum equation of inviscid flow
2 _ 2
3,0u,+9, (puu,)=-9, (c?ps,) p=cp

From Boltzmann to NS equation -
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= Solution of Boltzmann equation:
H-theorem and Maxwell distribution results in Krook equation
(BGK Approximation)

0.f +6d.f ==(f7~ )

= Chapman-Enskog Expansion
F=f4efO 4+ f@4...

7,(x,t)=—7 pRT(d, u, + 8xjul. —%d, u,9;)

2
V~Tc!

From Boltzmann to Lattice Boltzmann
21
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= Energy flux

E.(x,1t)= %puzul- +%W:‘L w? fde + pul-J-c w;w; fde +%pL wzwjfdc

v v Vo
convective transport work of & heatflux

= “Macrosopic” energy equation

d,pe+d, u, (pe+p)= -0, (uiTz‘j + qj)

qj(x’t) = —%%T,ORT ax,T

From Boltzmann to NS equation -
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= Representation in discrete velocities

ft,xe)= f(t,xe,)=f,(t,x)

= Velocity-discrete Boltzmann Equation

0, fy+e,0,fy= 1(fof" —f,) (STR Approximation)
7

= Lattice Boltzmann Equation for eaAt = Ax

ot +At,x)— f,(t,x) +ea§;[fa(t+At,x+eaAt) — £, (t+At,x)|=R.S.

fa(r+Az,x+eaAt>—fa(t,x)=f(f;q—fa)

From Boltzmann to Lattice Boltzmann
23
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= Equlibrium velocity distribution for lattice Boltzmann Equation
- no direct transfer of Maxwell distribution f;q _ ea o

= Moments of equilibrium velocity distribution shall satisfy

[retwierde= Y W, 122 yie,)

up to 2th order !

= After linearisation

e e u uule,e
i s

CS CS S

From Boltzmann to Lattice Boltzmann
24
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Relation to macroscopic properties

® from moments of distribution function
- density p= mzafa
- massflux pu; = mzaeaiifa

- momentum flux T, = mzaea,iea,j(f;q - £)

= from scale analysis (Chapman Enskog)

- pressure p= cszp
(weakly compressible)

-viscosity v =c2(r—-1)At

From Boltzmann to Lattice Boltzmann
25
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Summary:

= Boltzmann equation
9, f +ed [+ K0, [ =0(f)

= BG Krook equation (STR)
0f +of = (1~ 1)

= Velocity discrete BGK (1. order DGL in diagonalform)
St ead el =15~ 1)

= Finite difference approximation

falt+ 8+ g0) = £ (6,3) = (£ = 1)

From Boltzmann to Lattice Boltzmann
26
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Boundary Conditions for complex geometries

= MAC approach to describe geometry

= no-slip wall boundary condition applying “bounce back”
= allows to represent arbitrarily complex structures

= allows quasi automatic generation of meshes

From Boltzmann to Lattice Boltzmann

27
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Advantage of LBM

= simple, explicit Algorithms
- low memory requirements
- data locality
- high Performance on many processor architectures
- advantages regarding parallel processing

= complex geometries via immersed boundaries
- Cartesian grids

- Modeling of geometry from Computer Tomography or other
interferometry

Lattice Boltzmann -
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Summary LBM Theory

= LBM is not an attempt to duplicate exactly microscopic processes like in
molecular dynamics schemes

= LBM is an abstraction of these processes

= LBM leads to a solution of the Navier-Stokes equations in certain limits
such as low Mach number and weak compressibility

= simple algorithmic structure (stream — relax)
= Note: In contrats to LGA, LBM does have stability limits

Lattice Boltzmann -
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Variants of LBM

= incompressible fluids

= Multi-time relaxation scheme (improvement of stability)

= Spezies transport and chemical reactions, combustion

= energy transport (often hybrid methods)

® turbulence models (ke, LES, ...)

= free surface / immiscible fluids

= multi-phase flows

= non-Newtonian fluids

= Composite grids / local grid refinement / non-Cartesian grids
= Higher order boundary conditions / curved boundaries

Lattice Boltzmann -




