

The lattice-Boltzmann Method

Introduction

Gunther Brenner

Institute of Applied Mechanics Clausthal University

ParCFD, Antalya, 21 May 2007

Part 1: LBM Theorie

- Introduction
 - classification
 - top-down versus bottom-up
- development
 - cellular automata
 - HPP, FHP and LGA
- From LGA to LBA/LBM
 - comparison
- LBM in detail
 - from Boltzmann to Navier Stokes
 - liskrete Boltzmann equation
 - lattice BGK method

Part 2: LBM in practice

- Lattice Boltzmann algorithm
- Boundary Conditions
- Implementation

Contents

3

Part 3: LBM - modeling of complex fluids

Prof. Manfred Krafczyk, TU Braunschweig

Tuesday, 22.5.07

Part 4: LBM - Parallel and HPC issues

Dr. Gerhard Wellein, RRZE Erlangen, Dr. Peter Lammers, RUS Stuttgart Thomas Zeiser, RRZE Erlangen

Wednesday, 23.5.07

Contents

5

top-down vs. bottom-up

$$\begin{aligned}
\partial_{t} \rho + \partial_{x_{j}} \rho u_{j} &= 0 \\
\partial_{t} \rho u_{i} + \partial_{x_{j}} \Pi_{ij} &= 0 \\
\partial_{t} \rho e + \partial_{x_{j}} E_{j} &= 0
\end{aligned}$$

$$\Pi_{ij}(\mathbf{x}, t) = \rho u_{i} u_{j} + \sigma_{ij}(\mathbf{x}, t) \\
\sigma_{ij} &= -p \delta_{ij} + \tau_{ij}$$

Balance of

- Mass
- Momentum
- Energy

$$\partial_t f + \mathbf{c} \partial_\mathbf{x} f + \mathbf{K} \partial_\mathbf{c} f = Q(f)$$

Boltzmann equation

- two particle collisions
- molecular chaos hypothesis
- external forces // collisions

Classical mechanics

- Hamiltons equation
- Liouville equation

Molecular Dynamics methods Direct Simulation Monte Carlo

Classification

7

- cellular automata (CA)
 - idealized physical system
 - state defined at discrete times and locations
 - finite levels of discrete states
 - simultaneous update of state variables in discrete time steps
 - deterministic and homogeneous rules of update
 - rules depend on neighborhood states

cellular automata

9

- lattice gas automata
- origin: Hardy, de Pazzi und Pomeau (1976)
 - Cartesian grid
 - propagation along grid links
 - 4 directions corresponding to
 - 4 discrete states
 - max. 1 bit each direction each node
 - simple collision rules

"no collision" "head on collision" "transparent collision"

cellular automata: HPP

example HPP LGA - Chopard (1996)

cellular automata: HPP

11

TU Clausthal

two dimensional **Lattice-Gas** Automata FHP - Frisch, Hasslacher, Pomeau

$$n_{\alpha}(t+\tau,\vec{x}+\tau\vec{c}_{\alpha})-n_{\alpha}(t,\vec{x})=\Delta_{\alpha}(n_{\alpha})\ ,\ \alpha=0..6$$

1. Step: Propagation Fluid- Particle

2. Step: Collision Partikel / Particle Particle / Wall

3. Step: Ensemble Average –
Pressure, density, fluxes, ...

$$f_{\alpha} = \langle n_{\alpha} \rangle = \begin{cases} \text{Density:} & \rho = \sum_{\alpha} f_{\alpha} \\ \text{Massflux:} & \rho \mathbf{u} = \sum_{\alpha} c_{\alpha} f_{\alpha} \end{cases}$$

cellular automata: LGA FHP

Relation to macroscopic magnitudes

$$\frac{\partial \rho}{\partial t} + \nabla(\rho u) = 0$$

$$\frac{\partial u}{\partial t} + g(\rho)(u\nabla)u = -\frac{1}{\rho}\nabla\rho + v\Delta u$$

$$p = c_s^2 \rho$$

 $g(\rho)$ Nonlinear scaling term

cellular automata: LGA FHP

13

Lattice-Gas Automata – some properties

- © guarantees conservation principles at micro-level
- © quite simple algorithm
- © only Boolean operations, no truncation error, no error propagation
- © unconditionally stable, though explicit in time
- (3) solution is noisy due to averaging in finite ensemble
- 😊 viscosity hard to control and prescribed by collision model
- (a) nonlinear scaling term in advection term is unphysical
- no chance for "healing", just symptomatic treatment
- ⇒ lattice-Boltzmann method (McNamara and Zanetti)

From lattice-Gas to lattice-Boltzmann

lattice Gas

lattice Boltzmann

diskrete (Boolsche) states

$$n_{\alpha}(\mathbf{x},t)$$

- collision rules
- unconditionally stable

continuous distribution functions

$$f_{\alpha}(\mathbf{x},t) = \langle n_{\alpha}(\mathbf{x},t) \rangle$$

- relaxation term
- conditionally stable

LGA and LBA

15

Boltzmann equation

$$\partial_t f + c \partial_x f + K \partial_c f = Q(f)$$
 $f = f(t, x, c)$

Boltzmann equation

$$\partial_t f + c \partial_x f + K \partial_c f = Q(f)$$
 $f = f(t, x, c)$

Invariants

$$\psi_k = (m, mc, \frac{1}{2}mc^2)$$

Moments of distribution functions

$$\int_{c} f \, m dc = \rho(t, x)$$

$$\int_{c} f \, m c dc = \rho u(t, x)$$

$$\int_{c} f \, \frac{1}{2} m c^{2} dc = \rho e(t, x)$$

From Boltzmann to NS equation

17

Boltzmann equation

$$\partial_t f + c \partial_x f + K \partial_c f = Q(f)$$
 $f = f(t, x, c)$

Invariants of collision term

$$\int_{c} Q(f) \psi_k(c) dc = 0, \quad \psi_k = (m, mc, \frac{1}{2}mc^2)$$

Integration of Boltzmann equation

$$\int_{c} \psi_{k}(\partial_{t} f + c \partial_{x} f) dc = 0$$

$$\psi_{0} = m: \qquad \partial_{t}\rho + \partial_{x}\rho \mathbf{u} = 0 \qquad \qquad \partial_{t}\rho + \partial_{x_{j}}\rho u_{j} = 0$$

$$\psi_{1\cdots 3} = m\mathbf{c}: \qquad \partial_{t}\rho \mathbf{u} + \partial_{x}\mathbf{\Pi} = 0 \qquad \qquad \partial_{t}\rho u_{i} + \partial_{x_{j}}\Pi_{ij} = 0$$

$$\psi_{4} = \frac{1}{2}m\mathbf{c}^{2}: \qquad \partial_{t}\rho e + \partial_{x}\mathbf{E} = 0 \qquad \qquad \partial_{t}\rho e + \partial_{x_{i}}E_{j} = 0$$

$$\Pi_{ij}(x,t) = m \int_{C} c_i c_j f d\mathbf{c} \qquad E_i(x,t) = \frac{1}{2} m \int_{C} c_i \mathbf{c}^2 f d\mathbf{c}$$

From Boltzmann to NS equation

19

TU Clausthal

• Decomposition of the velocity $c_i = u_i + w_i$

$$\Pi_{ij}(x,t) = \rho u_i u_j + \underbrace{\rho \int_c w_i w_j f dc}_{\sigma_{ij}} = p \delta_{ij} + \tau_{ij}$$

Maxwell distribution (equilibrium)

$$f^{eq} = \frac{\rho}{(2\pi c_s^2)^{\frac{3}{2}}} \cdot \exp\left(-\frac{(c-u)^2}{2c_s^2}\right)$$
 $c_s^2 = RT$

"Macrosopic" momentum equation of inviscid flow

$$\partial_t \rho u_i + \partial_{x_i} (\rho u_i u_j) = -\partial_{x_i} (c_s^2 \rho \delta_{ij})$$
 $p = c_s^2 \rho$

 Solution of Boltzmann equation:
 H-theorem and Maxwell distribution results in Krook equation (BGK Approximation)

$$\partial_t f + c \partial_x f = \frac{1}{\tau} (f^{eq} - f)$$

Chapman-Enskog Expansion

$$f = f^{eq} + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \cdots$$

$$\tau_{ij}(\mathbf{x},t) = -\tau \rho RT(\partial_{x_i} u_j + \partial_{x_j} u_i - \frac{2}{3} \partial_{x_k} u_k \delta_{ij})$$

$$v \sim \tau c_s^2$$

From Boltzmann to Lattice Boltzmann

21

TU Clausthal

Energy flux

$$E_{i}(\boldsymbol{x},t) = \underbrace{\frac{1}{2}\rho\boldsymbol{u}^{2}\boldsymbol{u}_{i} + \frac{1}{2}\rho\boldsymbol{u}_{i}\int_{\boldsymbol{c}}\boldsymbol{w}^{2}fd\boldsymbol{c}}_{convective\ transport} + \underbrace{\rho\boldsymbol{u}_{i}\int_{\boldsymbol{c}}\boldsymbol{w}_{i}\boldsymbol{w}_{j}fd\boldsymbol{c}}_{work\ of\ \boldsymbol{\sigma}} + \underbrace{\frac{1}{2}\rho\int_{\boldsymbol{c}}\boldsymbol{w}^{2}\boldsymbol{w}_{j}fd\boldsymbol{c}}_{heatflux}$$

"Macrosopic" energy equation

$$\partial_{t}\rho e + \partial_{x_{j}}u_{j}(\rho e + p) = -\partial_{x_{j}}(u_{i}\tau_{ij} + q_{j})$$

$$q_{j}(\mathbf{x},t) = -\frac{5}{2}\frac{k}{m}\tau\rho RT \partial_{x_{i}}T$$

Representation in discrete velocities

$$f(t, \mathbf{x}, \mathbf{c}) \Rightarrow \widetilde{f}(t, \mathbf{x}, \mathbf{e}_{\alpha}) = f_{\alpha}(t, \mathbf{x})$$

Velocity-discrete Boltzmann Equation

$$\partial_t f_{\alpha} + \boldsymbol{e}_{\alpha} \partial_x f_{\alpha} = \frac{1}{\tau} (f_{\alpha}^{eq} - f_{\alpha})$$
 (STR Approximation)

Lattice Boltzmann Equation

for
$$e_{\alpha}\Delta t = \Delta x$$

$$f_{\alpha}(t + \Delta t, x) - f_{\alpha}(t, x) + e_{\alpha} \frac{\Delta t}{\Delta x} [f_{\alpha}(t + \Delta t, x + e_{\alpha} \Delta t) - f_{\alpha}(t + \Delta t, x)] = R.S.$$

$$f_{\alpha}(t + \Delta t, \mathbf{x} + \mathbf{e}_{\alpha} \Delta t) - f_{\alpha}(t, \mathbf{x}) = \frac{\Delta t}{\tau} (f_{\alpha}^{eq} - f_{\alpha})$$

From Boltzmann to Lattice Boltzmann

23

TU Clausthal

- Equlibrium velocity distribution for lattice Boltzmann Equation
 - no direct transfer of Maxwell distribution

$$f_{\alpha}^{eq} = f^{eq}$$
 ?

Moments of equilibrium velocity distribution shall satisfy

$$\int_{c=-\infty}^{\infty} f^{eq} \, \psi(c) \, dc \cong \sum_{e_{\alpha}} W_{\alpha} \, f_{\alpha}^{eq} \, \psi(e_{\alpha})$$

up to 2th order!

After linearisation

$$f_{\alpha}^{eq} = t_{p} \rho \left\{ 1 + \frac{\boldsymbol{e}_{\alpha} \boldsymbol{u}}{c_{s}^{2}} + \frac{\boldsymbol{u} \boldsymbol{u}}{c_{s}^{2}} \left(\frac{\boldsymbol{e}_{\alpha} \boldsymbol{e}_{\alpha}}{c_{s}^{2}} - \delta_{\alpha} \right) \right\}$$

Relation to macroscopic properties

from moments of distribution function

- density
$$\rho = m \sum_{\alpha} f_{\alpha}$$

- massflux
$$\rho u_i = m \sum_{\alpha} e_{\alpha,i} f_{\alpha}$$

- momentum flux
$$au_{ij} = m \sum_{\alpha} e_{\alpha,i} e_{\alpha,j} (f_{\alpha}^{eq} - f_{\alpha})$$

- from scale analysis (Chapman Enskog)
 - pressure $p = c_s^2 \rho$ (weakly compressible)
 - viscosity $v = c_s^2 \left(\tau \frac{1}{2}\right) \Delta t$

From Boltzmann to Lattice Boltzmann

25

Summary:

Boltzmann equation

$$\partial_t f + c \partial_x f + K \partial_e f = Q(f)$$

BG Krook equation (STR)

$$\partial_t f + c \partial_x f = \frac{1}{\tau} (f^{eq} - f)$$

Velocity discrete BGK (1. order DGL in diagonalform)

$$\partial_t f_{\alpha} + \boldsymbol{e}_{\alpha} \partial_x f_{\alpha} = \frac{1}{\tau} (f_{\alpha}^{eq} - f_{\alpha})$$

Finite difference approximation

$$f_{\alpha}(t + \Delta t, \mathbf{x} + \mathbf{e}_{\alpha} \Delta t) - f_{\alpha}(t, \mathbf{x}) = \frac{\Delta t}{\tau} (f_{\alpha}^{eq} - f_{\alpha})$$

Boundary Conditions for complex geometries

- MAC approach to describe geometry
- no-slip wall boundary condition applying "bounce back"
- allows to represent arbitrarily complex structures
- allows quasi automatic generation of meshes

From Boltzmann to Lattice Boltzmann

27

Advantage of LBM

- simple, explicit Algorithms
 - low memory requirements
 - data locality
 - high Performance on many processor architectures
 - advantages regarding parallel processing
- complex geometries via immersed boundaries
 - Cartesian grids
 - Modeling of geometry from Computer Tomography or other interferometry

Summary LBM Theory

- LBM is not an attempt to duplicate exactly microscopic processes like in molecular dynamics schemes
- LBM is an abstraction of these processes
- LBM leads to a solution of the Navier-Stokes equations in certain limits such as low Mach number and weak compressibility
- simple algorithmic structure (stream relax)
- Note: In contrats to LGA, LBM does have stability limits

Lattice Boltzmann

29

Variants of LBM

- incompressible fluids
- Multi-time relaxation scheme (improvement of stability)
- Spezies transport and chemical reactions, combustion
- energy transport (often hybrid methods)
- turbulence models (ke, LES, ...)
- free surface / immiscible fluids
- multi-phase flows
- non-Newtonian fluids
- Composite grids / local grid refinement / non-Cartesian grids
- Higher order boundary conditions / curved boundaries

Lattice Boltzmann