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Preface
On behalf of the organizers, it is my distinct pleasure to welcome you to the 21st International Confer-
ence on Parallel Computational Fluid Dynamics (ParCFD 2009) here in Moffett Field, California—
home of NASA’s renowned Ames Research Center. First convened in Manhattan Beach, California 
in 1989, this is the 20th anniversary of the ParCFD conference, an annual meeting dedicated to the 
discussion and dissemination of recent developments and applications of parallel computing in the 
field of CFD and related disciplines. Held at different venues around the world, ParCFD provides a 

global forum for the exchange of novel ideas related to the parallel solution of CFD problems from a spectrum of 
arenas. The conference brings together CFD researchers and practitioners from academia, government, and industry, 
enabling interactions between both experts and non-specialists in the field.

This year, the ParCFD conference features 48 contributed papers chosen from 82 submissions from 20 countries. 
Each extended abstract was reviewed by three experts from the Scientific Program Committee for originality, rel-
evance, completeness, and clarity. In addition, the program includes six invited sessions of 24 papers and a poster 
session of 15 presentations. Together, these talks cover recent advances and emerging challenges in a variety of areas 
such as mechanical and aerospace engineering applications, parallel algorithms and solvers, large-scale supercomput-
ing and application scaling, multidisciplinary design optimization, unstructured overset grid methods, and parallel 
meshfree techniques. Six internationally recognized experts will deliver plenary lectures on high-performance com-
putational engineering, high-fidelity simulations using high-order methods, real-time in-flight icing simulations, 
block-structured Cartesian grid techniques, parallel computational models for exascale architectures, and future di-
rections in high-performance computing. A panel of experts will explore the question of how CFD applications can 
successfully exploit petaflops-scale computing systems and beyond. Finally, a tutorial on programming models for 
emerging multi-core architectures will educate attendees on how these systems, with increasing numbers of cores, can 
be effectively exploited.

This book consists of all invited and contributed abstracts and posters presented at ParCFD 2009. A DVD-ROM 
containing the full papers will be mailed later this year to all conference attendees. I would like to thank all authors 
and speakers for their contributions, and the members of the Scientific Program Committee for providing constant 
guidance and timely evaluation of all the submissions. I am also indebted to the invited speakers, invited session or-
ganizers, panel members, and tutorial instructors who helped make this a truly high-quality meeting. I am grateful 
to all the sponsors for their financial support without which the conference would not have been possible. Finally, 
my sincere thanks to the Local Organizing Committee whose long hours, can-do attitude, and constant cooperation 
made this conference a success.

Dr. Rupak Biswas
ParCFD 2009 Conference Chair
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Conference Panel: Petaflops and Beyond 

Moderator: Ron Bailey, NASA Ames Research Center 

Panelists: 
• Michael Aftosmis, NASA Ames Research Center 
• David Emerson, Daresbury Laboratory, UK 
• John Grosh, Lawrence Livermore National Laboratory 
• John Shalf, Lawrence Berkeley National Laboratory 
• Suga A. Sugavanam, IBM Systems & Technology Group 

 

The purpose of this panel is to explore the question of how CFD applications can exploit 
computing systems with performance potential of petaflops and beyond. Due to limits on 
switching speeds and power consumption, high-performance computers are moving into a new 
era dominated by many-core chips and heterogeneous architectures. As their speeds advance 
beyond petaflops and toward exaflops, computers can be expected to reach one million cores 
and perhaps more. Thus, it seems clear that new programming approaches will be needed, and 
perhaps, new algorithms if we are to realize significant real performance increases for CFD 
applications. 

Suggested Questions to the Panel: 
• What will future architectures and systems look like as performance extends from 

petaflops toward exaflops? 
• What are the dominant CFD applications that could benefit from petaflops-and-

beyond computing? 
• What are the algorithmic and programming challenges that must be overcome to 

efficiently exploit petaflops-and-beyond hardware to solve CFD and other similar 
problems? 

• What should the CFD community do to prepare to address challenges presented by 
petaflops-and-beyond systems, and to exploit their use? 

CONFereNCe PaNel
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engineering applications. He is a committee member and contributor to the AIAA drag prediction workshop series, 
and an AIAA Associate Fellow. Most recently, he has been involved in the advocacy of high-performance computing 
research and development for aerospace engineering disciplines.
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iNviTeD SPeaker  
biOgraPhieS
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Future Directions in High Performance Computing (HPC) 2009–2018 

 
Horst D. Simon 

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 

(Tel: 510-486-7377; e-mail: hdsimon@lbl.gov) 

Abstract: Since about 2004 there has been a fundamental transition taking place in computing. 

The microprocessors clock speed improvement have leveled off, and future performance 

increases from processors will be realized through multi-core and many-core chips. This 

change in the basic building blocks for HPC has opened up the architecture discussion for 

future HPC platforms, and in 2008 we see vigorous experimentation with accelerators, GPUs, 

FPGAs, and embedded technology. HPC has not seen such a variety of new technology being 

explored since the early 1990s. In my talk I will explore what the multi-core revolution will 

mean for the future of HPC. I will use the very successful model of the HPC ecosystem and 

its important elements economic driver, system architecture, and programming model to 

explain how I think HPC will develop in the next five years. Several of the projects that are 

currently going on in Berkeley will be discussed in detail, since they will provide tools for the 

future productive use of supercomputers. They include auto-tuning, PGAS languages, and 

most importantly the Green Flash project, that attempts to find a new solution for energy 

efficient computing in the future. 

 



9

21st International Conference on Parallel Computational Fluid Dynamics

 

 

A FRONTIER OF PARALLEL CFD:  

REAL-TIME IN-FLIGHT ICING SIMULATION OVER COMPLETE 

AIRCRAFT 
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ABSTRACT 

With the power of supercomputers increasing exponentially, there is an insatiable need for more advanced 

multi-disciplinary aerospace CFD simulations. A particular current interest is the 3D viscous turbulent 

simulation of the highly nonlinear aspects of aero-icing. The applications of CFD in that field are literally 

light-years behind aerodynamics, with a significant number of users still mired in correlations, or 2D, 

inviscid, incompressible, and, yes, Panel Methods simulations! Thus, the disparity of tools between 

aerodynamics and icing departments within an organization leads to a disconnect that makes ice protection 

a downstream isolated process that is not an integral part of the aerodynamic behavior of an aerospace 

system (aircraft, rotorcraft, jet engine, UAV, etc.). While 3D RANS has been recently introduced, it is still 

considered computationally too demanding for industry when wide parametric studies for certification are 

required. In addition, not unlike the situation in aerodynamics say 20 years ago, the naysayers are at every 

corner claiming that CFD is not reliable and is of limited use. 

Another important chasm of in-flight icing is the lack of means for proper training of aircraft pilots as to the 

effects of ice on the aircraft behavior. That such training is too rudimentary has been brought up at many 

conferences by pilot representatives. In essence, in a simulator
 
the effect of ice as transmitted to a pilot is to 

make the aircraft heavier and shift its center of gravity. In reality, pilots know better as different types of 

ice at different temperatures, rates of accretion, liquid water content and droplets diameter, coupled to the 

flight characteristics of the specific aircraft, can have dramatically different effects. Some aircraft are 

known to be so ice-sturdy that almost no amount of ice can affect them, while others can, at the first sign of 

roughness, exhibit dangerously sluggish behavior. Thus, it is primordial to analyze the icing and aircraft 

envelopes together and not separately, and bring CFD-based for the prediction of ice accretion rates and 

shapes and of performance degradation for the specific aircraft. The obvious difficulty, naturally, would be 

to carry out ice calculations in real time and not simply through a lookout table.  

In order to make such compute-intensive simulations more affordable and eventually carried out in real-

time, four steps would be needed: 

1. The formulation of the icing problem as a truly unsteady phenomenon, and the derivation of 

new Navier-Stokes-like equations for each of its 5 successive facets: CFD of clean aircraft, 

droplet impingement, ice accretion, anti- and de-icing, and CFD of iced aircraft; repeat, 

2. The speedup of all of these modules, through massive parallelization, 

3. The formulation of Reduced Order Models to extract information from a limited number of 

high-fidelity runs to form a database for certification verification or for flight simulator data, 

4. The parallelization of Reduced Order Models in order to yield results in real-time. 
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We will present reduced order models based on the “Proper Orthogonal Decomposition” method, and 

predict a wider swath of flow fields and ice shapes based on a limited number of “snapshots” obtained from 

complete high-fidelity (3D viscous, compressible, turbulent) CFD computations. Modes are extracted from 

these snapshots and used to reconstruct the CFD field, and/or the aerodynamic coefficients, and/or the ice 

shapes, for other conditions within the range. Each mode will be shown to represent an important and 

particular aspect of the physics of the problem. This reduces calculation times by two to three orders of 

magnitude from the full 3D ones, enabling a more complete map of the performance of an iced aircraft over 

a wide range of flight and weather conditions to be used in its certification and in pilot training. Work in 

progress will also be covered. 

Ice on complete aircraft (CFD + Impingement + Accretion)                                                                                          

Above, high-fidelity CFD: days                Below, POD: Seconds 
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Abstract: HPC is in a phase change with technology advances driving the development of 

new system and core architectures, programming models and languages, runtime and operating 

systems. A new model of computation is required to enable Exascale computing to address the 

challenges of scalability, latency, synchronization and scheduling overhead, and through put 

contention. This presentation will describe a paradigm being used for co-design of the layers of 

the system stack for systems of the end of the decade based on the innovative ParalleX model 

of computation. ParalleX is a message-driven multithreaded global address space strategy with 

advanced synchronization semantic constructs. Early results derived from experiments with a 

new runtime system supporting the ParalleX approach will be discussed. 

Keywords: Exascale, ParalleX, High Performance Computing, Model of Computation. 

 

1. INTRODUCTION 

Throughout the 7 decades of the active field of the electronic digital stored program computer, technology for logic, 

memory, and communications has evolved providing changing opportunities for the structure, management, and 

application of high performance computing. For each transition in epoch, system design has experienced an event of 

punctuated equilibrium where a new class of computer architecture and programming model(s) would be created to 

exploit the new opportunities of the improved technology while compensating for their limitations through structural 

and usage innovation. Such dramatic changes constituted an HPC phase change. There have been 5 such HPC phase 

changes. Underlying each HPC phase change is by intent or implicitly a corresponding change in the foundation 

model of computation. A model of computation or alternatively an “execution model” is a paradigm that governs the 

structure, interrelationship, operation, management, and methodology or usage of the system. Other models also 

overlapped these such as dataflow, multithreaded, and systolic arrays that either found market niches or did not 

extend beyond the experimental proof of concept stage.  

In the 6th phase (which may be designated the “heterogeneous multicore era”) the technology drivers are as follows  

1) The continued advances of device density (Moore’s Law) with expected feature size of 8nm by 2018 

2) Processor complexity for increased per core performance is exhausted past the point of diminishing returns.  

3) The need for system performance pushing the bounds 

of capability by 3 orders of magnitude.  

4) The suitability for an entirely new class of 

computation based on dynamic graphs necessary for 

sparse computations (e.g., adaptive mesh refinements) 

and informatics.  

The sixth phase resulting from the new HPC phase change may 

be cast either as the Exascale era or the heterogeneous 

multicore era. The strategy of employing a new model of parallel computation as a conceptual framework for co-

design of advanced systems to catapult HPC through this phase change is viable only if it serves as an enabler and 

tool to this end 

3. GOALS OF A NEW MODEL OF PARALLEL COMPUTATION 

Conventional practices employ message passing for scalable distributed memory systems. This limits the means by 

which distributed computation may be organized, controlled, and performed. An alternative is the use of message-

HPC Phases Model of Computation 

Accumulator/buffers Sequential Issue 

Registers/caches Pipelined Execution 

Pipelined ALU/register 

& memory-banks 

Vector Processing 

Array processors SIMD Array 

MPP/clusters Communicating 

Sequential Processes  
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driven computation. This allows work to move to the data rather than always requiring that data be gathered to the 

work. Sometimes the later is appropriate when there is relatively little remote data needed while the context of 

execution is substantial and local. However, the opposite can also be true. The use of message-driven computation 

reduces the average amount of data movement, which also reduces power. Combined with the work-queue model, it 

provides innate system-wide latency hiding which is critical to overall system efficiency. One class of application 

that will particularly benefit from this is dynamic graph applications. In particular, an advanced class of message-

driven computation may allow continuations to migrate across the system and the computation. This transfers the 

locus of control to the area of the system where the work needs to be conducted rather than trying to control it from 

a remote location. Conventional practices exploit avoidance, caching in the presence of temporal and spatial locality 

to memory, and prefetching. While these methods have some practical value, even in the future, they are restrictive 

and demand advanced structures and methods that overcome latency. 

Finding parallelism in the computation is essential to exposing the billion-way parallelism required for Exascale 

computing. One area that may reveal significant more parallelism is through concurrent actions on the meta-data that 

define the structures of sparse data and directed graphs. Allowing the computing to traverse different paths through a 

graph at the same time exposes the inherent parallelism of the graph. But this requires a new way of synchronizing 

actions manipulating the graph. Informatics applications will be significantly determined by the meta-data of their 

global data structures. A form a data-directed execution will emerge where data structure and flow control merge. 

Large distributed systems have orders of magnitude time variation between the most local actions and system-wide 

actions.  Furthermore, due to a number of factors it is unlikely that other than the most constrained systems and 

programming methods can determine the time and ordering of all actions in the system. Local domains can bound 

these. These can be operated synchronously while the system overall may likely have to operate asynchronously. A 

future model of computation should support semantics and mechanisms that facilitate effective synchronous and 

asynchronous operation. This is necessary for retaining invariants of operation while existing in an asynchronous 

environment. It should provide runtime adaptive control for contention resolution, latency hiding, and load 

balancing. As an example of such mechanisms is the futures construct, first proposed in the late 70’s, that allows 

computations to proceed at their best rate, supports anonymous producer-consumer computation, and managing 

eager versus lazy evaluation. 

PGAS or partitioned global address space systems such as the early CRI T3E provides a good compromise 

providing a global address space but not guaranteeing cache coherence. However, PGAS fixes the location of a 

global variable to a single node. If load balancing or some other need for movement occurs, a virtual variable has to 

change its virtual name. Active Global Address Space may be an approach that circumvents the problems with cache 

coherence, exploits the possibility of PGAS, but goes further by permitting the movement of virtual variables in 

physical space without having to change its name. Conventionally, flow control is fixed to individual physical 

resources and their respective program counters. An opportunity exists to break this rigid approach and employ the 

abstraction of the “continuation” which is a construct that represents next actions to happen. A program counter is an 

instance of a continuation in the narrow sense. It indicates where the next operation of a process to be performed can 

be found. But when global parallelism is being harnessed for performance gain, then a global parallelism flow 

control construct is required. Such a continuation decouples the flow control from a fixed physical resource. It can 

be merged with the meta-data parallelism to provide the data directed execution. And it permits the migration of 

flow control to the position of the data that is to be worked on.  

The principal goal of a new model of parallel computation is to serve as a conceptual framework to govern the co-

design and interoperability of all the layers in the system stack from programming models down to core 

architectures and all of the hardware and software levels in between. Such a model will enable and support many 

distinct design points consistent within the discipline. Furthermore, the possibility of multiple models of 

computation adds an additional dimension to the richness of opportunity. A major goal for the new model is the 

dramatic increase in useful program and execution parallelism. The new model of computation has to expose, 

exploit, execute approximately billion-way parallelism to reduce execution time to solution, increase performance to 

Exascale capability, to hide latencies and dynamically employ available resources for high efficiency, and exploit 

the hundreds of millions of cores and two orders of magnitude or more threads and ILP. A second major goal is to 

enable the mitigation of local and global latency, which can impose delays of from hundreds to tens of thousands of 

cycles within the system and orders of magnitude before if secondary storage is included.  

4. PARALLEX MODEL OF COMPUTATION 

The ParalleX model of parallel computation is an example of one possible execution model that incorporates many 

of the opportunities. It supports message-driven work-queue execution in the context of an Active Global Address 

space. It provides for lightweight synchronization, continuation migration, and exposes meta-data parallelism. 
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Together these characteristics support dynamic optimization for best parallelism, load balancing, low overhead, and 

adaptive contention resolution. It is being enhanced to include a multi-phase micro-checkpointing model to deal 

with hardware failures and maintain continued operation. (It does not guarantee soft error or transient hardware error 

protection) ParalleX is also being enhanced for self-aware power management. Locality domains guarantee 

compound atomic operations, deliver bounded response time to issued instructions, and can ensure shared memory 

semantics. Synchronous operation within a locality provides low overhead for data access, thread creation, context 

switching, and memory access. Between localities actions are asynchronous using message-driven computation. 

Parcels are a form of active messages that include information about the destination object upon which it is to 

operate, the action that is to be performed, a set of operand values which may be as large as a page, and a 

continuation that indicates what should happen after the action has been completed. The Active Global Address 

Space provides a global shared memory name space. It is not cache coherent. Copy semantics are provided to allow 

distributed variables to maintain consistency on reads and writes. AGAS allows virtual variables to retain their 

virtual address even if they are moved between localities. Split-phase transactions are supported such that work 

performed on data on the locality may be passed to another locality when remote data needs to be processed.  

This diagram illustrates many of the key semantic constructs and 

mechanisms of the ParalleX (PX) model of computation. The 

shaded squares represent physical localities. All operations within a 

locality are synchronous. All operations between localities are 

asynchronous. A process is a context that defines data and tasks to 

be performed on the localities to which it is assigned. A process 

may be allocated multiple localities; these not in any way mutually 

local to each other. More than one process can share a locality (not 

shown). Process A is allocated three localities while Process B is on 

one locality but also uses a separate physical execution unit. 

Processes can incorporate child processes (not shown). Large 

rectangular transparent boxes illustrate processes. 

Basic tasks in the ParalleX model are conducted by “threads” which 

are partially ordered instructions working on a potentially infinite 

set of registers. This convenient abstraction minimizes the number 

of anti-dependencies to permit easy back end compilation to diverse ISA and data paths for different cores. In the 

diagram, black “squiggly” lines represent the threads. While a process may span multiple localities, a thread by 

definition resides on only one locality at a time and usually (but not necessarily) on a single locality throughout its 

lifetime. Threads are ephemeral: each is created at some point in time, performs its work, and terminates. A thread 

may be suspended but the ideal thread is relatively lightweight, works only on local data and terminates quickly. The 

effect of a thread may be manifest in several ways: 1) it changes local mutable state, 2) it creates sibling threads (or 

processes) that outlive it, or 3) it creates parcels that invoke remote threads (or processes) or change remote mutable 

state. Threads are first-class objects with names in the same name space as variables and objects. They can be 

manipulated by threads potentially of other processes. Threads can be suspended to form objects called “depleted 

threads”. A depleted thread contains all the private state of an active thread but takes up no physical execution 

resources other than a little main memory space. A depleted thread is a first class object and has the same virtual 

address of the original thread from which it is derived. Therefore, it can be accessed; its state modified; and, it can 

cause a new thread with the original name to be created (equivalent to reactivating the old thread). Threads perform 

almost all the work of the program. The exception is the parcel that directly effects remote state without invoking a 

thread.  

Parcels are a class of active messages. They are illustrated by the green lines that connect between localities. Parcels 

support semantics at remote localities that threads can perform directly within their resident locality. These are 

creating remote threads or processes, changing remote state through compound atomic operations, or manipulating 

threads or processes directly. A parcel carries four types of information: a) the name (virtual address) of the object 

upon which it is to operate, b) the action to be performed, c) a set of operand values, and d) a continuation 

specifying what is to happen upon completion of the specified action. The actions can be thread invocations, process 

instantiations, or primitive compound atomic operations on virtual data or physical devices with physical addresses. 

Parcels support asynchronous operation of the ParalleX environment. Parcels can arrive at any time and order of 

arrival is not guaranteed. They can be relatively short with little or no operand values, or be very long when used to 

move blocks of data.  Parcels are not first class objects and do not have virtual names. Locally at the source and 

destination localities parcels do display handles for local manipulation. Parcels belong to a global object called the 

“parcel set”. A special form of the parcel is used for a methodology called percolation. Percolation moves the entire 
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work footprint of a thread to a remote physical execution site. It is illustrated by the red lines between thread and 

functional unit. By foot print it is meant to include the instructions of the thread, the stack frame of the thread, the 

input arguments used for the thread, and any other information required to fully instantiate the thread on the remote 

execution site. Percolation is used to make efficient use of relatively precious resources like accelerators, GPUs, 

FPGAs, or expensive streaming processors. It does so by assuming the overhead and hiding the latencies that such a 

unit would otherwise have to incur. Thus percolation supports prestaging of execution information. Percolation is 

also used to dynamically allocate new resources within a system to an application program.  

A critical element to the management and coordination of global parallel flow control is the Local Control Object of 

“LCO” shown as small yellow/brown-green splotches. An LCO is a synchronization object in the object-oriented 

sense. It has associated with it both state and methods that operate upon the state. LCOs are first-class objects in that 

they have names that are virtual addresses like other variables. The purpose of the LCO is to coordinate global flow 

control by means of a number of different types of synchronization mechanisms from simple mutex elements to 

sophisticated dataflow templates and futures constructs. An LCO is accessed like any other object locally by a 

thread or remotely by a parcel possibly changing its state. An LCO includes one or more criteria which if satisfied 

will result in the instantiation of a thread. LCOs can also buffer incoming requests until such a condition can be 

satisfied. This may include the availability of physical resources. The LCO is the embodiment of a continuation. The 

continuation field of a parcel with some exceptions is a reference to one or more LCOs.  

The semantics of thread to thread and thread to data interrelationships of the ParalleX model of computation are 

symmetric with respect to intra-locality synchronous operation and inter-locality asynchronous operation using 

parcels or possibly percolation.  

4. PARALLEX: IMPLEMENTATION & INITIAL RESULTS 

Implementation of the ParalleX model of computation involves many system levels. Among these are the runtime 

system which is created for a given application when the application is started and is terminated when the 

application finishes. All state and activities are performed within the contexts of parallel processes. A process may 

be assigned one or more localities upon which it stores its state variables and that perform its threads. Processes may 

share localities. The process that employs all localities assigned to the application program and for which all other 

processes and threads are descendents is called process “main”. 

All named objects live in global memory and are accessible 

through the Active Global Address Space manager. The runtime 

system maintains the address map on behalf of the application 

and with the support of the operating system. First class objects 

including program variables are allocated space in memory 

organized according to the hierarchy of processes. The runtime 

system maintains the AGAS map. In the case of linked data 

structures like dynamic graphs, it also maintains virtual to 

physical address translations cached in the data structure itself. 

These entry are updated upon data migration. Within a locality are many threads in different states as discussed 

earlier. The runtime system includes the thread manager, which is responsible for all aspects of thread operation 

from their beginning in the start state to their termination in the end state.  The thread manager controls the state 

transition of every thread, schedules the threads for execution on the physical resources, preempts threads on the 

physical resources when other threads require access to such resources, supervises the thread queue hierarchy, and 

creates new threads from parcels, local control objects, and from parent threads.  

The runtime system also controls local control objects (LCOs). Like transactional memory semantics LCOs require 

guaranteed compound atomic operations to ensure resolution of concurrent incident accesses. The LCOs determine 

the conditions for creation of new threads and the runtime system updates LCOs and when ready creates the new 

threads. The runtime system is also responsible for the management of parcels. The runtime system supports the 

parcel handler that keeps waiting parcels in queue until there is room on the locality to serve them as new threads. It 

also out queues new parcels created by threads on the locality until there is 

sufficient available network bandwidth to send them out. The runtime 

system is distributed among all localities associated with a given 

application. It contributes to distributed functions like AGAS maintenance 

and parallel process support. Local software components are the building 

blocks, implemented in C++, from which these distributed runtime system 

functions are comprised.  
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As a simple but challenging example of the operation of the HPX runtime system, a problem running millions of 

cores was performed for the recursive Fibonacci sequence. This is a very poor way to compute Fibonacci numbers 

but a great way to generate many very lightweight threads. In effect, this is one of the more challenging toy 

applications creating an enormous amount of rather useless parallelism in terms of number of concurrent threads. 

This first diagram shows a single physical execution unit at a time running three different versions of fib: using Java, 

Pthreads, and HPX. The graph shows time to completion with respect to the Fibonacci number. Interestingly, the 

Java version exhibited the worst performance. Pthreads under Linux was significantly better than Java. But the HPX 

threads was about twice as good as the Pthreads version. More importantly, the HPX runtime system was able to 

handle many more concurrent threads than Pthreads, which was the worst or the Java system. This demonstrates 

even at an early stage of developments that HPX runtime thread management is superior by a significant degree that 

other conventional practices of the Java virtual machine or the Unix Pthreads support. Using two cores to the 

previous experiment shows good scaling for the HPX runtime system with response time becoming half of the 

single core runtime while maintaining the same number of concurrent threads, still far greater than the Java virtual 

engine or the Pthreads OS implementation.  

 

A more important test case using ParalleX and the HPX runtime system is one in which one of the key properties of 

the model is exposed. ParalleX can use dataflow like synchronization and control flow eliminating the over 

constraining use of global barriers. Although somewhat simplified, this problem comes from a numerical relativity 

adaptive mesh refinement problem. Many different threads from the inner loops of the problem are concurrent but 

the length of execution can vary by well over an order of magnitude. Further, 

for any one thread of the next iteration only requires that three of the threads 

from the previous iteration be completed. ParalleX offers the opportunity to 

start future threads when only the precedence threads are completed and also 

allows for dynamic thread scheduling. These two related features are 

captured by this experiment differentiating it from the conventional use of 

global barriers. In this traditional approach, all threads of one iteration need 

to be completed to satisfy the global barrier before any of the threads of the 

next iteration can begin; an over-constrained condition.  

The experiment uses a synthetic set of inner loop execution times retaining the same mean but increasing the 

variance of the set of threads. The diagram above compares the HPX 

implementation shown in blue with the comparable implementation in MPI 

with global barriers shown in red. The length of time between successive 

global barriers for the MPI implementation is determined by the slowest thread 

even if many threads complete in a small fraction of this time. The HPX 

implementation only requires a few threads to complete to launch a thread in 

the next iteration. As the variance increases, the length of execution of the 

slowest thread for the MPI implementation grows, increasing the overall 

application execution time. In comparison, the HPX runtime system 

dynamically selects the next available thread to be performed and overlaps 

these with threads of the next iteration whose precedence constraints have been 

satisfied. As shown in the diagram, the runtime of the HPX execution remains relatively constant even as the 

variance increases, the mean remaining constant, while the runtime for the MPI version grows proportionally. This 

demonstrates an important performance and efficiency opportunity of the ParalleX model of computation compared 

to the MPI model using global barriers.  
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Abstract: Over the last decade, advocacy for high performance computing has increasingly been taken up by the 

science community with the argument that computational methods are becoming a third pillar of scientific discovery 

alongside theory and experiment. Computational engineering, on the other hand, has continually been relegated to a 

set of mature software tools which run on commodity hardware, with the notion that engineering problems are not 

complex enough to warrant the deployment of state-of-the-art hardware on such a vast scale. We argue that 

engineering practices can benefit equally from an aggressive program in high performance computational 

methods, and that these problems are at least as important as science problems, particularly with regards to national 

competitiveness objectives. Computational engineering problems differ in various ways from computational science 

problems, and specific techniques for addressing these differences on large scale parallel hardware need to be 

developed.  Traditionally, computational fluid dynamics, and more specifically, computational aerodynamics have 

been principal drivers for advances in high-performance computational engineering.  We argue that these fields are 

best suited to resume this leadership role in computational-based engineering developments, and describe a set of 

Grand Challenge problems which can be used to motivate and demonstrate the benefits of high-performance 

computing for aerospace engineering problems. 

 

 

Keywords: high-performance, computing, aerospace, engineering 

 

1. INTRODUCTION 

By all current accounts,  the path towards increasingly high performance computing (HPC) for 

applications running at sustained petaflops involves radically higher levels of parallelism. This is 

evident in the rapid growth in the number of cores of current and planned leadership class 

machines due to the emergence of multicore architectures, as well as the appearance of GPUs 

and Cell processors on the scientific computing stage, which achieve high performance through 

extensive multithreading. While much of the interest and advances in high performance 

computing have been achieved in various science application domains, advances in HPC for 

engineering application domains has received less attention over the last decade. This has been 

noted in a recent NSF report entitled Simulation Based Engineering Science [1], where the need  

advances in various important engineering application fields has been outlined, and the special 

needs of engineering problems has been discussed. More recently, a Computational-Based 

Engineering Summit was held under the auspices of the NSF, Sandia National Laboratory, the 

National Academy of Engineering and the Council on Competitiveness to examine these same 

issues [2]. 

 

 Engineering application problems differ from science applications in various ways which 

complicate the porting of these applications to current and future planned petaflops architectures. 
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Engineering problems are most often concerned with a small number of specific objectives, 

which are needed to evaluate product performance or guide design decisions. Furthermore, the 

accuracy required for useful simulations in the design process is highly variable, where 

sometimes crude ball-park accuracy is sufficient, while at other times high accuracy is required. 

In most cases however, good accuracy in the relevant objective does not require fully resolving 

all physical phenomena present in the governing physics, but only those that have an important 

impact on the important objectives. These characteristics of engineering simulations often mean 

that extensive spatial resolution (for example billion plus grid cell calculations) is not necessary 

for many problems. However, these problems remain extremely computationally intensive due to 

the need to take large numbers of small time steps, the cost of solving stiff non-linear systems at 

each time step, and in the case of design optimization problems, the cost of performing large 

numbers of optimization steps. Since most current-day applications rely on spatial domain 

decomposition for achieving parallelism, most engineering simulations have lagged at exploiting 

the levels of parallelism needed for achieving petaflops simulations on the most recent hardware. 

  

Conversely, in cases where high spatial accuracy is required, the complex geometries most often 

associated with engineering problems has made the generation of highly resolved meshes (billion 

plus cells) impractical, since specialized (mostly commercial) grid generation and geometry 

definition software is required, which most often runs in serial. Additionally, these large mesh 

data-sets must be loaded onto the parallel machine at startup, and retrieved along with the 

computed solution at each (or selected) time step of the simulation, for time dependent dynamic 

mesh problems, constituting an I/O bottleneck on current petascale hardware.  

 

A less specific but equally important obstacle to increased investments in HPC for simulation-

based engineering projects is a notion that engineering problems do not require ever increasing 

amounts of computational power. While it is true that capabilities exist that are used successfully 

in every-day engineering calculations, radical advances in simulation capability are possible 

through the coupling of increased computational power with more capable algorithms. 

Historically, simulation-based engineering capabilities have been developed and demonstrated 

using public funding. As the potential benefits of these technologies becomes apparent, industry 

has generally been very eager to adopt these technologies and integrate them into their product 

development cycle, often making the large investments required in terms of hardware, software 

and personnel. However, once the capabilities become integrated, industrial emphasis more often 

turns to the goal of reducing the cost of this fixed simulation capability (generally through 

migration to newly available cheaper hardware) rather than seeking increases in simulation 

capabilities at fixed cost (i.e., by continually acquiring the latest available high end hardware). 

For example, the development of computational aerodynamics in the aerospace community was 

characterized by a continual drive to higher fidelity (and more accurate) methods from the 

1970’s to the 1990’s, beginning with panel methods, proceeding to linearized and nonlinear 

potential flow methods, inviscid flow (Euler) methods, and culminating with Reynolds-averaged 

Navier-Stokes (RANS) methods in the 1990’s. Throughout this development period, effective 

use of these methods required investment in the most capable high-end computing hardware 

available at the time, an investment industry was more than willing to shoulder in return for the 

improved simulation capability. In the early 1990’s, it would not be uncommon for larger 

corporations to house HPC hardware on a par with most of the leading national labs, for either 

aerodynamics in the aerospace industry, or crash simulations in the automobile industry. 
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However, the last decade has seen a stagnation of the capabilities used in aerodynamic 

simulation in the aerospace industry, with RANS simulations having become the high-fidelity 

simulation method of choice, and emphasis being directed towards reduction in the cost of 

RANS simulations through migration towards more cost-effective but no longer leading-edge 

computational hardware.  

 

The science community has been very effective in demonstrating scientific discoveries that can 

be made possible through advances in HPC. Similarly, the engineering community should strive 

to demonstrate the benefit of HPC advances in this field. The formulation of Grand Challenge 

problems can be used for this purpose. The intent in defining these Grand Challenge problems is 

to set long-term goals for driving the essential developments that will be required to achieve 

these and other types of advances in simulation capabilities, and to illustrate the new frontiers 

that such capabilities would enable.  In the final paper, we will firstly outline the specific ways in 

which computational engineering problems differ from computational science problems, and will 

formulate and discuss various Grand Challenge aerospace engineering problems which can be 

used to both demonstrate the benefits of HPC in aerospace engineering, and to drive advances in 

the state-of-the-art. 

 
 

 

 

 

REFERENCES 

1. Simulation Based Engineering Science: Revolutionizing engineering science through simulation. NSF 

    Report, May 2006. Report of the NSF Blue Ribbon Panel on Simulation Based Engineering Science. 

 

2. Transforming Engineering through Computational simulation. http://www.sandia.gov/tecs/TECSsummit.html. 

 

3.  Mavriplis, D. J., Darmofal, D.,  Keyes, D., and Turner, M.: Petaflops Opportunities for the NASA Fundamental 

Aeronautics Program, AIAA Paper 2007-4084, Presented at the 18
th

 AIAA Computational Fluid Dynamics 

Conference, Miami FL, June 2007. 



24

21st International Conference on Parallel Computational Fluid Dynamics
 
 

 

Building-Cube Method: A Block-Structured Cartesian Grid Approach for 
Near-Future Peta-Flops Computers 

 
Kazuhiro Nakahashi*, Shun Takahashi**, Takashi Ishida*** 

* Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, JAPAN 
(Tel: +81-22-795-6978; e-mail:naka@ad.mech.tohoku.ac.jp) 

**Postdoctoral fellow, Department of Aerospace Engineering, Tohoku University, JAPAN 
(e-mail: takahasi@ad.mech.tohoku.ac.jp) 

***Ph.D. candidate,  Department of Aerospace Engineering, Tohoku University, JAPAN 
(e-mail: ishida@ad.mech.tohoku.ac.jp) 

Abstract: Currently CFD has become an indispensable tool for analyzing and designing 
aircrafts. Wind tunnel testing, however, is still the central player for aircraft developments and 
CFD plays a subordinate part. In this article, demands for next-generation CFD are described 
with an expectation of near future PetaFlops computers. Then, Cartesian grid approach, as a 
promising candidate for next-generation CFD, is discussed by comparing it with the current 
unstructured grid CFD. It is concluded that the simplicity of Cartesian mesh CFD from the 
mesh generation to the post processing will be a big advantage in the days of PetaFlops 
computers. 
Keywords: Cartesian grid, Large-scale computation 

 

1. WILL CFD TAKE OVER WIND TUNNELS? 

More than 20 years ago, I heard an elderly physicist in fluid dynamics say that it was as if CFD were just surging in. 
Other scientists of the day said that with the development of CFD, wind tunnels would eventually become redundant. 

Impressive progress in CFD has been made during the last three decades. In the early stage, one of the main targets 
of CFD for aeronautical fields was to compute flow around airfoils and wings accurately and quickly. Body-fitted-
coordinate grids, commonly known as structured grids, were used in those days (Fig. 1). 

 
Fig.1: Progress of Aeronautical CFD 

From the late eighty’s, the target was moved to analyzing full aircraft configurations [1]. This spawned a surge of 
activities in the area of unstructured grid CFDs. Unstructured grids provide considerable flexibility in tackling 
complex geometries [2]. CFD has become an indispensable tool for analyzing and designing aircrafts. 
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So, is CFD taking over the wind tunnels as predicted twenty years ago? 

Today, Reynolds-averaged Navier-Stokes (RANS) computations can accurately predict lift and drag coefficients of 
a full aircraft configuration. It is, however, still quantitatively not reliable for high-alpha conditions where flow 
separates. Boundary layer transition is another cause of inaccuracy. These are mainly due to the incompleteness of 
physical models used in RANS simulations. Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) 
are expected to reduce the physical model dependencies. But we have to wait for the further progress of computers 
for the use of those large-scale computations in engineering purposes. 

For the time being, the wind tunnel is the central player and CFD plays a subordinate part in aircraft developments.  

2. RAPID PROGRESS OF COMPUTERS 

The past CFD progress has been highly supported by the improvements of computer performance. The latest 
Top500 Supercomputers Sites [3] tell us that the performance improvement of computers has reached a factor of 
1000 in the last 10 years as shown in Fig. 2. Increase in the number of processors in a system in addition to the 
degree of integration contributes to this rapid progress. 

With a simple extrapolation of Fig. 2, we can expect to use PetaFlops computers soon. This will accelerate the use of 
3D RANS computations for the aerodynamic analysis and design of entire airplanes. DNS which does not use any 
physical models may also be used for engineering analysis of wings. In the not very far future, CFD could take over 
wind tunnels. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Performance development in Top500 Super-computers [3]. 

3.  DEMANDS FOR NEXT-GENERATION CFD 

So, is it enough for us as CFD researchers to just wait for the progress of computers?  Probably it is not. Let’s 
consider demands for next-generation CFD on PetaFlops computers.  

1. Easy and quick grid generation around complex geometries, 
2. Easy adaptation of local resolution to local flow characteristic length, 
3. Easy implementation of spatially higher-order schemes, 
4. Easy massively-parallel computations, 
5. Easy post processing for huge data output, 
6. Algorithm simplicity for software maintenance and update. 

Unstructured grid CFD is a qualified candidate for the demands 1 and 2 as compared to structured grid CFD. 
However, an implementation of higher-order schemes on unstructured grids is not easy. Post processing of huge data 
output may also become another bottleneck due to irregularity of the data structure.  
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Recently, studies of Cartesian grid method were renewed in the CFD community, because of the several advantages 
such as rapid grid generation, easy higher-order extension, and simple data structure for easy post processing. This is 
another candidate for the next-generation CFD. 

4. BUILDING-CUBE METHOD 

A drawback of uniform Cartesian grid is the difficulty of changing the mesh size locally. This is critical, especially 
for airfoil/wing computations, where an extremely large difference in characteristic flow lengths exists between 
boundary layer regions and far fields. Accurate representation of curved boundaries by Cartesian meshes is another 
issue. 

A variant of the Cartesian grid method is to use the adaptive mesh refinement in space and cut cells or the immersed 
boundary method on the wall boundaries. However, introduction of irregular subdivisions and cells into Cartesian 
grids complicate the algorithm for higher-order schemes. The advantages of the Cartesian mesh over the 
unstructured grid, such as simplicity and less memory requirement, disappear. 

The present author proposes a Cartesian grid based approach, named Building-Cube method [4]. Basic strategies 
employed here are; (a) zoning of a flow field by cubes of various sizes to adapt the mesh size to local flow 
characteristic length, (b) uniform Cartesian mesh in each cube for easy implementation of higher-order schemes, (c) 
same grid size in all cubes for easy parallel computations, (d) staircase representation of wall boundaries for 
algorithm simplicity. 

 
 
 
 
 
 
 
 
 
 

  
 
 
 
Fig. 3: BCM mesh (481 cubes with 256x256 Cartesian mesh in each cube) and the instantaneous Mach distributions 

for a four-element airfoil; Re=2.83x106, =0.201,  
 

It is similar to a block-structured uniform Cartesian mesh approach 
[5], but unifying the block shape to a cube simplifies the mesh 
generation [6] and the domain decomposition of a computational 
field around complex geometry. Equality of computational cost 
among all cubes significantly simplifies the massively parallel 
computations as shown in Fig. 4. It also enables us to introduce data 
compression techniques for pre and post processing of huge data [4].  

A staircase representation of curved wall boundaries requires very 
small grid spacing to keep the geometrical accuracy as shown in Fig. 
3. But the flexibility of geometrical treatments obtained by it will be 
a strong advantage for complex geometries and their shape 
optimizations. Although computation using high-density Cartesian 
mesh is still far from practical use because of the computational time, 
it will be resolved with a progress of computers. 

Fig.4: Overall flow-solution procedure 
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Fig. 5: BCM mesh (5930 Cubes with 32x32x32 mesh in each cube, totally about 200 million cells) and the time-
averaged velocity distribution of the incompressible flow computation [7]. 

5. SIMPLICITY IS ESSENTIAL FOR NEXT-GERATION CFD 

CFD, using a high-density Cartesian mesh, is still limited in its application due to the computational cost. The 
predictions about Cartesian mesh CFD and computer progress in this paper may be too optimistic. However, it is 
probably correct to say that the simplicity of the algorithm from grid generation to post processing of Cartesian 
mesh CFD will be a big advantage in the days of PetaFlops computers. 
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Abstract: With the maturation of CFD technology and staggering advances in super-

computing capability, CFD applications are becoming increasingly vital and cost effective 

for the design and analysis of spaceflight vehicles and related launch operations. We 

present a brief summary of progress in CFD technology as well as discuss some pacing 

challenges that must be overcome, especially for space exploration applications. 

Keywords: Spaceflight, launch environment, numerical validation, predictive capability, 

supercomputing. 

 
1. INTRODUCTION 

   
Supporting NASA’s exploration mission using CFD has been challenging due to the wide spectrum of speed 

regimes, the complexity of geometries, and the fundamentally diverse flow physics that are involved. Early 

design practices for developing space flight vehicles and operational procedures relied heavily on experimental, 

test, and flight data. As CFD technology continues to mature along with exponential advances in super-

computing capability, CFD applications become increasingly important and cost-effective for the design and 

analysis of flight vehicles and related launch operations. Just as it was in aviation and aircraft design, the 

primary question now is: How mature is CFD in supporting NASA’s exploration mission? Since such 

applications involve inherently large numbers of grid points and massive computing resources, the efficient 

parallel implementation of simulation tools adds one more dimension to traditional CFD technology. In this 

paper, current capabilities and maturity will be demonstrated through recent examples followed by the authors’ 

perspective on what advances must be made to make CFD more useful to mission development and operations. 

 
2. EVOLUTION OF CFD CAPBILITIES IN AEROSPACE ENGINEERING 

 
There are a vast number of cases where the CFD approach has made significant impact on aerospace engineer-

ing. In this section, a short summary of progress in CFD applications is given from a historical perspective. The 

examples included below illustrate the level of complexity researchers have encountered in fluid engineering as 

modeling and fidelity requirements have increased and CFD technology has evolved. 

 

2.1 Aeronautics 

Application of CFD tools to engineering problems became realistic in the early 1970s, as high-speed scientific 

computers were becoming increasingly available. Algorithms that had been developed earlier were further 

extended, utilizing then high-speed processors. However, computational speeds were still too limited to produce 

Navier-Stokes (N-S) solutions for problems with complicated geometry. Starting with simplified formulations, 

numerous successful methods and tools were developed and applied to real-world design problems, with the 

most notable success in commercial airplane designs. Processor speed increased from a fraction of a gigaflop in 

the early ’80s to tens of gigaflops in the ’90s. With this increased computer speed, full N-S solutions for a 

complete aircraft configuration became possible. Since then, the goal of CFD simulation has advanced further 

to tackle drag prediction, unsteady N-S computations, and multidisciplinary optimizations for full aircraft 

geometry.  
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2.2 Aerodynamics of Spaceflight Vehicle 

The CFD technology and experience gained from aeronautics can be extended to aerodynamic analysis of space 

flight vehicles. However, flow simulations involving these vehicles, for example the Space Shuttle and other 

expendable launch vehicles, are significantly more challenging compared to aerodynamically shaped vehicles 

like commercial aircraft. Computational challenges include complex geometry such as protuberances, multiple 

bodies in relative motion as encountered in stage separation, boundary layer plume interaction, and transient 

flow through variable speed regimes. Related physical modeling involves non-equilibrium turbulence, 

chemistry, blast wave, and aero-acoustics. Validation is also very difficult due to insufficient test or flight data. 

From an engineering point of view, CFD tools can still offer alternatives to an entirely empirical approach and 

have become indispensable in developing exploration vehicles and operations. Often, CFD applications to 

mission support relied on “best practices” and some of these results will be presented to illustrate that CFD adds 

a new dimension to the “test-fail-fix” procedure of the past. 

 

2.3 Ground Operations and Launch Environment 

Ground operations involve safety and risk assessment of the Vehicle Assembly Building (VAB) at NASA 

Kennedy Space Center. For example, if an accidental ignition of a stored Solid Rocket Booster (SRB) were to 

occur and subsequently lead to propagation of pressure waves and toxic gas to nearby personnel and structures, 

it is of critical importance to estimate resulting damages and risks. This problem can only be addressed through 

computational modeling. CFD tools provide the basis for developing a reliable and sophisticated modeling 

procedure. This simulation requires unconventional modeling of the ignition and propagation of fire. Due to the 

large spectrum of spatial and temporal scales, computing time and memory requirements push the boundaries of 

current supercomputing capabilities. 

 

Another area where supercomputing enables the quantification of flow-related issues is in the launch environ-

ment. Simulations that have been used to generate data for design decisions have included the flame trench, 

propagation of the ignition over pressure (IOP) phenomenon, and aero-acoustic loads generated from the 

unsteady/transient exhaust plumes during launch. High-fidelity unsteady/transient flow simulation is necessary, 

and inclusion of multi-phase flow modeling is required to account for the water suppression system, activated to 

suppress the IOP waves. Previously, impact of acoustic waves on the vehicle has been estimated using empirical 

correlations. However, high-fidelity unsteady CFD can be utilized to more accurately model the entire launch 

environment. 

 

2.4 EDL and Aerothermodynamics 

Entry-Descent-Landing (EDL) poses enormous challenges to CFD simulations, especially in the hypersonic 

flow regime. NASA’s latest aerodynamic design of entry vehicles was based on Viking technology from 1976. 

With current supercomputing capability, it is possible to make revolutionary advances in entry technology that 

is required for large mass landing on planets and the Moon, as well as some Earth entry conditions. The 

geometry of entry vehicles is relatively simple; however, the physics related to EDL requires major advances in 

CFD technology, especially the modeling of high-energy physics, physics-based transition, and high-fidelity 

turbulence. Such multi-physics flow simulations require high-accuracy numerical procedures and large 

computing resources. 

 

2.5 Propulsion System   

Numerical methods and boundary condition procedures have advanced since the 1980s to handle complex rotor-

stator interaction problems encountered in turbine engines. Yet the computational requirements for modeling 

and simulating even a limited number of a rotor-stator rows are so huge that it took many months to complete 

just one calculation involving a single stage of a rotor-stator—making it impossible to apply CFD simulation to 

a turbine or compressor design. Primarily due to the computer hardware speedup, it became possible to analyze 

multi-stage turbine flow in the 1990s and 2000s. Yet despite these advances, the impact on jet engine design is 

still limited to the component level. This is partially due to inability of the current physics model in predicting 

highly accurate flow quantities. 

 

Rocket propulsion CFD has, in general, lagged behind aircraft engine applications. The complexity of the flow 

physics and hardware geometry involved in modeling rocket engines has delayed the application of CFD to this 

area. One of the more significant applications of CFD simulation to rocket engine analysis began in the early 



32

21st International Conference on Parallel Computational Fluid Dynamics

 
‘80s, when NASA carried out a series of upgrades to the Space Shuttle Main Engine (SSME), originally 

developed in the ‘70s. One such effort involved the powerhead redesign, which resulted in successful develop-

ment of an upgraded flight engine in the mid-90s. The liquid-fueled engine includes complex internal flow and 

turbopumps. One critical role CFD played in recent years is related to the Shuttle flow liner that required high-

fidelity unsteady flow simulation through the SSME Low Pressure Fuel Turbopump (LPFTP) and around the 

flow liner located just upstream of LPFTP. Simulation results helped identify the root cause of the flow liner 

crack failure, and to determine flight rationale for a safe mission. These calculations would not have been 

possible without the combination of supercomputing capability, engineering knowledge, and advanced 

computational modeling tools. 

 

2.6 Human Modeling for Spaceflight 

Finally, application of CFD methods to blood flow has been of interest to biomedical researchers for many 

years. However, the lack of a complete analysis capability prevented it from making significant impacts on 

medical research and practices. For human spaceflight, biomedical performance modeling for astronauts is 

essential. To date, this is done via empirical correlations. However, available flight data is limited to the maxi-

mum duration of 6-month stays on the International Space Station. For longer space travel, extrapolation of the 

current data, either from flight or ground-based (e.g. from artificial-gravity experiments), is difficult. Some of 

the critical information needed includes bone and muscle loss mechanism, and impact of altered gravity on 

blood circulation in the brain. These can be supported by CFD along with physiological models. 

Supercomputing capability can provide an extra dimension to this “digital astronaut” type human space flight 

modeling yet to be realized. 

 
3. CHALLENGES AND POSSIBILITIES 

 
In general, CFD capabilities have been advanced along with computational technologies. For example, flow 

solver codes and software tools have been developed to the point that many daily fluid engineering problems 

can now be computed routinely. However, especially for space exploration applications, there remain some 

pacing challenges. 

 

3.1 Acceleration of Solution Procedures 

Flow simulations for space exploration applications generally involve very complex geometries, flow physics, 

and flight envelopes; thereby requiring substantial computing resources. Specifically, resolving unsteady 

phenomena is becoming increasingly important in order to fully understand the fluid dynamics issues. A typical 

process of flow simulation, especially for high-fidelity unsteady flow, requires large amounts of both computing 

time and human time in problem set-up and data pre-/post-processing. A substantial reduction in overall 

computational time for 3-D unsteady flow simulations is required to enable unsteady CFD to become relevant to 

mission-critical decision making. A portion of this speedup will come from enhancements in computer 

hardware; however, the remainder must be contributed by advances in grid-generation procedures, flow solution 

algorithms, and more efficient parallel implementations. 

 

3.2 Prediction of Physics 

Currently, the predictive capability of flow simulation is generally quite limited. The accuracy of physical 

models is one of the major bottlenecks and needs to be further developed. Advanced fluid dynamics models 

including turbulence and transition prediction, chemical reaction, and cavitation physics must be included for 

accurate prediction of mission-related tasks. In addition, other quantities like thermal stresses and structural 

loads must be coupled to the fluid dynamics models to provide more realistic simulation capabilities in an 

inherently multi-disciplinary environment. These computations will require not only large computing resources, 

but massive data storage and efficient data management technologies as well. 

 

Perhaps one of the most critical issues in physical modeling remains the turbulence model. Those routinely used 

in production CFD codes are based on equilibrium turbulence, i.e. an eddy viscosity model. However, as the 

requirement to apply CFD to engineering problems with complex flow physics increases, correct prediction of 

time-dependent turbulence and non-equilibrium phenomena become necessary. For example, in aerospace 

design, the most productive aspect of CFD applications has often been to predict relative change among design 

variations. Even for this trend prediction, higher-level turbulence modeling is necessary. To push the limits of 
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operational boundary and try bold new ideas, more predictive capabilities will be needed in the near term for 

complicated flows involving transient phenomena, separation, tip vortex interaction, and cavitation. To make 

these advances, high-fidelity computations using supercomputing resources will play a key role in CFD. 

 

3.3 Human Resources and CFD Validation 

The human resources aspect of applying CFD to exploration missions must also be considered. Even though 

CFD has advanced remarkably, many challenging cases require experts. Computer science can automate a 

substantial portion of the CFD simulation processes, thus saving much human time required to obtain solutions. 

However, blind application of tools without understanding the capabilities and limitations of the methods 

involved could lead to catastrophic engineering results. As in many other engineering and science disciplines, 

CFD researchers and practitioners need to understand the physics and engineering systems being simulated. 

More rigorous and defined processes and procedures need to be developed to validate the CFD solutions and to 

provide engineering error estimation and repeatability of the results. In short, the application of CFD to 

engineering problems needs to be as well understood as a ground-based experiment or flight test. Future experts 

in the application of CFD must be cultivated to think through the relevant flow physics and apply the 

appropriate software to the engineering problem to succeed.  

 

Finally, the above statements are made without proofs or references, and compiled into a single graph as shown 

in Figure 1. This figure is thus intended to illustrate the evolution of CFD activities in support of space 

exploration as a function of computer hardware advances. In the full-length version of this paper, more details 

will be provided. The material presented here is collected from many accomplished researchers in the 

Exploration Technology Directorate at NASA Ames Research Center. 

 

 
Fig. 1: Evolution of high-end computing and examples of CFD applications to exploration mission. 
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Abstract: NASA’s Space Shuttle and International Space Station Programs routinely use large 

parallel computing systems to simulate a wide range of aerodynamic, aerothermodynamic, and 

debris impact environments. From ground winds and launch pad ignition over pressure 

environments, to on-orbit aerodynamics and hypervelocity orbital debris impacts, and back 

down through a hypersonic, non-equilibrium, chemically reacting flowfield, parallel 

computing systems provide key insights into critical environments that must be understood in 

order to safely carry out NASA’s space operations goals. 
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1. Background 

The Space Shuttle was developed prior to the availability of large parallel computing systems since the 1970’s state 

of the art in aerodynamic prediction technology was largely based on empirical data from wind tunnels. During the 

1980’s parallel vector processors, coupled with advances in physical modelling of fluid flows, enabled the first 

simulations of the complete launch vehicle, albeit with simplified geometry and overly coarse spatial discretization. 

Building on these simulation tools and leveraging exponential increases in parallel computing performance during 

the 1990’s improved the Shuttle simulations by an order of magnitude in geometric fidelity and resolution, allowing 

the first accurate computational predictions of the ascent aerodynamic environment.  

Mounting needs to provide high fidelity loads and thermal analysis in rarefied conditions, for both high altitude 

atmospheric flight and on-orbit plume environments, motivated the development of a highly parallelized 

implementation of the Direct Simulation Monte Carlo technique.  This capability was initially leveraged to simulate 

Shuttle/Mir rendezvous and docking loads generated by the Shuttle Reaction Control System plumes impinging on 

the Mir space station. Later applications included both plume impingement and high fidelity orbital drag predictions 

for ISS, Space Shuttle servicing mission environments to the Hubble Space Telescope, as well as rarefied airloads 

estimates on Earth and interplanetary satellites. 

Following the loss of STS-107, parallel computing systems were inundated with analyses to understand the cause of 

the damage to the Space Shuttle Orbiter Columbia and the environments that results in burn through of the wing 

leading edge. Efforts to understand the detailed flowfield around the External Tank and debris trajectories from 

foam and ice losses on the vehicle motivated the development of high fidelity CFD models of the External Tank and 

new debris transport tools to simulated unsteady dynamic trajectories. Non-linear structural impact models were 

used to simulate debris impacts on various components of the Shuttle. And numerous entry simulations were 

performed with various types of damage to determine the most probable damage scenario and later to develop 

capabilities to rapidly assess inflight damage to the Shuttle Orbiter. 

The tools developed to simulate ascent, entry and internal flow environments for the Shuttle and on-orbit 

environments for the ISS have been used to address a wide range of issues that have been encountered during the 

operational life of these vehicles and have been applied to many other vehicles by academia, commercial and 

military applications. Despite the advances in physical modeling and parallel computing, and the contributions that 

have been made over the life of the Space Shuttle, several key environments cannot be accurately simulated with the 

available tools or test facilities. Simulations of these key environments are typically hampered by physical modeling 

limitations and reduction or removal of these limitations is where additional research and tools development are 

needed. 
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A multi-Center NASA team is responsible for producing the complete aerodynamic and 

aerothermodynamic databases for the Orion Crew Module (CM) and Launch Abort 

System (LAS) covering the range of all possible operating conditions. The databases will 

be developed using both computational tools and wind tunnel testing. The development 

of the databases will require thousands of high fidelity numerical solutions that model the 

flow field around the CM and LAS for all flight regimes. The databases will be used to 

both design and operate the vehicle. 
 

Accurate aerodynamic data such as lift, drag, pitching moment, and dynamic stability 

derivatives are required to design the flight control system and ensure that the pinpoint 

landing requirement can be met. The aerodynamic database covers the entire CEV 

operational envelope including nominal ascent, ascent abort scenarios, on-orbit plume 

environments, re-entry flight from the hypersonic through subsonic regimes, and the 

terminal landing approach including parachute deployment. 

 

The aerothermodynamic database covers the portion of atmospheric flight that produces 

significant aeroheating to the vehicle. While the ascent heating environment is relatively 

benign, it must be quantified to ensure vehicle integrity during nominal and off-nominal 

ascent conditions. Specialized Thermal Protection System (TPS) material is required to 

protect the vehicle from the extreme heating rates experienced during re-entry. The 

design of TPS requires convective and radiative heating environments for the entire 

vehicle surface, including localized heating rates on penetrations and protuberances. 
 

We use a number of high fidelity codes to compute the flow field around the CM and 

LAS. Using multiple, independent codes for the same flight conditions increases our 

confidence in the computed results. The DPLR and LAURA codes are reacting Navier-

Stokes solvers that include thermochemical nonequilibrium. They are used to compute 

aerothermodynamic heating rates and aerodynamic coefficients in the hypersonic regime. 

The NEQAIR radiation solver is a first principles physics code that computes the 

production of radiation by the gas in the hot shock layer, transport of the photons through 

the shock layer, and the radiative heating to the CEV surface. Aerodynamic coefficients 

in the subsonic, transonic, and supersonic regimes are computed using four different CFD 

tools. The OVERFLOW and USM3D codes solve the Reynolds-averaged Navier-Stokes 

equations using multiple overset structured grids. CART3D is an inviscid, compressible 

flow analysis package that uses Cartesian grids to solve flow problems over complex 

geometries such as the Orion Launch Abort System (LAS) with abort motor and attitude 

control motor plumes. The unstructured Euler CFD code FELISA is also being used. 
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Abstract: Time accurate simulations are performed to analyze the effects of the exhaust plumes 

generated by the Space Shuttle's Solid Rocket Boosters (SRBs) on the Mobile Launch Platform 

(MLP) and flame trench. The subsequent ignition overpressure (IOP) waves are generated by 

the interaction of the plume with the trench. These IOP waves travel from the flame trench to 

the launch vehicle, and may cause stability problems during take-off. Computed results for one 

configuration of the Space Shuttle (STS-1) and three MLP configurations for a single SRB 

(used to represent Ares-Ix) are compared.  Additional simulations are then performed to study 

pressure history at multiple points in the flame trench, in order to assist in wall repair efforts. 

 

Keywords: Ignition Overpressure, Time-accurate calculations, Launch Environment. 

 

 

1. INTRODUCTION 

The purpose of this study is to characterize the ignition overpressure phenomenon during takeoff of new and 

existing launch vehicles. During ignition of the rocket propulsion system, transient pressure waves are initiated by 

the interaction of the exhaust plume with the flame trench. These ignition overpressure waves are generated during 

the initial buildup of thrust, in which mass is suddenly injected into the confined volume of the flame trench under 

the launch platform. The additional mass displaces the air within the trench causing a piston-like action and 

produces compression waves that travel up and down the trench. The traveling compression waves, along with their 

reflections, generate a series of strong pressure waves that travel back through the inlet of the trench towards the 

launch vehicle, where they may affect the stability of the vehicle during takeoff. For more details on the ignition 

overpressure phenomenon see (Jones, 1982). In order to assess the effects of the ignition overpressure waves on new 

and existing launch vehicles, time accurate simulations of the flame trench are performed for the Space Shuttle 

configuration and various MLP configurations with a single SRB, used to represent a preliminary design for Ares Ix. 

The SRB nozzle conditions are impulsively started with full thrust conditions (physically these conditions are 

achieved in approximately 0.3 seconds) and it is observed that IOP waves obtained from the Shuttle simulation 

correlate well with STS-1 flight data (the water suppression system was not implemented during the STS-1 launch), 

(R.S. Ryan, 1981). The impulsive start conditions are used for STS-1 and Ares-Ix simulations in order to assess the 

magnitude of the IOP waves. CFD simulations for the single SRB are performed for each configuration and a trend 

analysis of the IOP behavior is assessed. 

Subsequent simulations improve the accuracy of IOP generation by including the time-accurate ramping effect of 

SRB ignition.  For validation, pressure histories at points on the MLP and flame trench are compared to flight data 

from STS-4, with additional points that overlap the damaged wall regions reported to support wall repair efforts. 
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2.  METHODS & APPROACH 

 

2.1 Computational Model 

The computational geometry for the launch site simulations includes the flame trench, the surrounding ground 

terrain, the Mobile Launch Platform, two plume deflectors, and the launch vehicle. Launch vehicles used in the 

simulations include a simplified Space Shuttle configuration with one external tank (ET) and two SRBs, and a 

preliminary Ares-Ix configuration consisting of one SRB rocket. The MLP for the Space Shuttle configuration 

contains two openings for the SRB plumes. For the single SRB configuration, various MLP options were 

investigated including either one of two openings, and with one or two deflectors. In order to provide high fidelity 

simulations of the plumes, various support structures in the MLP opening are modeled in the computational 

geometry and grid systems. 

 

Structured viscous overset grid systems were built to model the different launch site configurations described above. 

A grid generation script based on the Chimera Grid Tools (CGT) script library, see (Chan, 2005), was developed to 

create the various grid systems. The overset grid and scripting approach are particularly well suited for this problem 

since they facilitate easy modifications to the grids to accommodate different options for the launch vehicle, MLP 

and deflectors. The Space Shuttle grid system contains 129 grids and 92 million grid points, see Fig. 1. Grid systems 

for the single SRB with various MLP options contain 92 to 120 grids, and 73 to 87 million grid points. 

 

 

Fig. 1 Overset grid system of Shuttle external tank, SRBs, MLP, and flame trench. 
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2.2 OVERFLOW Solver 

The CFD code OVERFLOW developed at NASA, see (P.G. Buning, 2003), is used in simulating the exhaust plume 

interaction with the flame trench. OVERFLOW is an implicit structured overset Reynolds Averaged Navier Stokes 

(RANS) solver. For the results reported here second-order central differencing with explicit artificial dissipation was 

used along with dual time stepping and the Spalart-Allmaras one equation turbulence model. Physical time steps on 

the order of 10-5 seconds and 20 to 40 subiterations per time step of the diagonalized implicit scheme were chosen 

to accurately represent the pressure waves and converge the numerical solution. The subiteration procedure consists 

of a right hand side evaluation followed by inversion of the diagonalized form of the approximate factored left hand 

side operator. The solver is made parallel through domain decomposition and uses the MPI message passing 

standard. The reported results were run on the Columbia supercomputer, at NASA Ames Research Center, on 128 

processors. The overall simulation of two seconds of physical time required several weeks of wall clock time. 

 

3.  COMPUTED RESULTS 

3.1 STS-1: Initial Validation 

In order to validate the geometric model and computational procedure, the IOP waves generated during ignition of 

STS-1 (without the water suppression system) was simulated first. The physics of the IOP phenomenon for this 

configuration has been well analyzed and documented as in (R.S. Ryan, 1981). Instantaneous pressure contours of 

the IOP waves along with temperature contours of the exhaust jets are displayed in Fig. 2. From these contour plots 

it is observed that large pressure waves are reflected from the trench, travel back towards the SRBs, and along the 

sides of the launch vehicle. Additionally, complicated vortical structures are observed as the plume enters the trench. 

In Fig. 3 the pressure at a point on the launch vehicle is plotted versus time, where the recorded flight data is on the 

left and the current CFD prediction is on the right. Good agreement between the peak pressure levels is observed, 

qualitative agreement is also good, provided the acoustic noise is removed from the flight data. 

 

 

 

Fig. 2 Instantaneous IOP waves (left) and temperature contours (right) for the Shuttle configuration. 
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Fig. 3 STS-1 IOP comparisons between flight data, (R.S. Ryan, 1981) (left) and CFD prediction (right). 

 

3.2 Ares 1-X: MLP Exhaust Hole Trade Study 

In preparation for the launch of the Ares 1-X test-vehicle, a trade study was performed to investigate the feasibility 

of using a modified Shuttle MLP in place of the as-yet-unfinished Ares ML. The good correlation between the 

predicted CFD results and the recorded flight data for STS-1 gave confidence in the computational model.  The 

model was modified to study the effects that different MLP configurations have on the IOP waves for the Ares 1-X 

(represented here by a single modified SRB, designated ‘left SRB’). Deflectors are located below each hole to direct 

flow into the trench, and in all simulations, only the left SRB is present. The purpose of this study is to analyze the 

IOP phenomenon for three MLP configurations:  

 

1. Both holes open, both deflectors present 

2. Both holes open, right deflector removed 

3. Right hole closed, right deflector removed 

 

Fig. 4 shows comparison of predicted IOP waves on inner side of SRB for STS-1 and single SRB using three MLP 

configurations. It is observed that in each configuration the IOP waves with the peak values are reflected from the 

SRB’s own exhaust hole. These waves sweep halfway up the SRB before the second weaker set of waves from the 

right side hole reaches it. This indicates that blocking the hole and removing the deflector do not have significant 

effects in reducing the IOP wave effects on the test-vehicle (as long as a proper water suppression system has been 

employed). The removal of the right side deflector allows the shock to penetrate sideways, thus delaying and slightly 

weakening the wave coming up the right hole. However, removing the right side deflector did not have significant 

reductions on the IOP pressure values on the vehicle. This also indicates primary contributions are coming from the 

left exhaust hole. 
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Fig. 4 Comparison of predicted IOP waves on inner side of SRB for STS-1 and single SRB using three MLP 

configurations. 

4.  SUMMARY 

Time-accurate CFD simulations of the launch pad flame trench were presented using the Shuttle configuration and 

three different MLP configurations for a single SRB. The predicted IOP waves compared well with flight data for 

the Shuttle configuration. Computations for the single SRB showed similar IOP patterns for each MLP configuration 

and the STS-1 results. Wall damage investigations also compared well with flight data in the single-species model. 

Adding the water suppression system will likely reduce the IOP effects, but requires the addition of multiphase 

capabilities into the CFD model, and is the subject of future study. 
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1. INTRODUCTION 

Recently we developed a hybrid finite element/volume (FE/FV) solver [1] for incompressible flows. The hybrid 
solver is based on the well-known pressure correction (projection) method [2, 3]. The solution procedure follows a 
segregated approach to decouple the pressure from the velocity. The velocity field is updated by solving the 
momentum equation provided that a known pressure field is given as a source term, through a cell- centered finite 
volume (FV) discretization. The pressure does not directly enter the momentum equation. Instead, an auxiliary 
variable, which is closely related to the pressure, takes the place of pressure in the momentum equation, providing 
pressure gradient information. We put the auxiliary variable on the vertices of cells. This deployment provides a 
convenient way to evaluate the pressure gradient using the local finite element basis functions. The incremental 
value of the auxiliary variable is computed by solving a Poisson equation using the Galerkin finite element (FE) 
method. The auxiliary variable is then used to update the velocity field. After the final velocity field is determined, 
the pressure can be updated using the auxiliary variable and the velocity divergence field. The pressure is updated in 
such a way that the pressure field is free of unphysical conditions in the boundary layer.

Our hybrid finite volume/element solver is aimed to take advantage of the merits of both the FV and the FE methods 
and avoid their shortcomings. For example, highly-stretched cells (also known as high-aspect-ratio cells) are 
commonly used inside the boundary layer for high Reynolds number flows to resolve the boundary layer and reduce 
the number of cells. The stabilization parameters in the stabilized FE based flow solvers [4, 5] are related to the 
characteristic element length that is not well defined for high-aspect-ratio mesh elements. Due to this, it is very 
difficult to control the numerical dissipation of stabilized finite element solvers. By contrast, the finite volume flow 
solver is very insensitive to the aspect ratio of the mesh cells. It is quite common for the FV solvers to handle cells 
with aspect ratios in the order of thousands [6, 7]. For this reason, we use the finite volume method to solve the 
momentum equation. On the other hand, the classic Galerkin FE method is very suitable for the elliptic typed 
equations like the pressure Poisson equation emerging from the segregated approach. Therefore, the combination of 
the FV method and the FE method is expected to perform well in the incompressible flow solvers based on the 
pressure projection method, which has been confirmed by our earlier work [1]. The numerical examples we 
presented in [1] are all about low Reynolds number flows. In our recent work, we have extended the hybrid flow 
solver to high Reynolds number flows using hybrid meshes with high aspect ratios [8]. 

We also incorporated the Detached Eddy Simulation (DES) [9] turbulence model into the flow solver to compute the 
eddy viscosity. The DES model was originally proposed to be an affordable hybrid Reynolds-averaged Navier-
Stokes (RANS) and Large Eddy Simulation (LES) models for flows at realistic Reynolds numbers. In attached 
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boundary layers the DES model acts as a RANS model and in massively separated regions the DES functions as the 
LES model. A modified distance to the wall named the DES distance acts as a switch between the RANS mode and 
the LES mode [9]. There are two DES-based turbulence models. One is the one-equation Spalart-Allmaras (SA) 
DES model [9-10]. The other is the two-equation Shear Stress Transport (SST) DES model [11]. The SA-DES 
model is gaining more popularity due to its simplicity and fair accuracy. In our hybrid flow solver, we incorporated 
the SA-DES turbulence model. For details of implementations, see [8]. 

Generally, there are two distinct approaches in the numerical simulation of two-fluid flows (excluding panel 
methods]). Depending on the physical characteristics of the problem, either “moving-mesh” or “fixed-mesh” 
techniques are used. In the moving-mesh techniques, the motion of the free-surface is absorbed by moving the 
computational nodes located on the free-surface. Most of the moving-mesh techniques are based on either the space-
time finite element formulations or the Arbitrary Lagrangian-Eulerian (ALE) formulations. In the applications where 
the deformation of the free-surface is large, the moving-mesh techniques usually result in element distortions. As the 
element distortions grow and become unacceptable, the generation of a new mesh and the projection of the solution 
from the old mesh to the new one is essential. In complex 3D applications, this procedure is extremely difficult and 
time consuming. In such cases, computations using fixed-mesh techniques are more desirable. 

The most common fixed-mesh techniques are based on the VOF, the level-set and Interface-Sharpening/Global 
Mass Conservation (IS-GMC) methods. In these methods, the Navier-Stokes equations are solved over a non-
moving mesh. A scalar function (or color function) acts as a marker to identify the location of the free-surface. This 
function is transported throughout the computational domain with a transient advection equation. 

In this presentation we will describe the extension our implicit hybrid finite element/volume solver to ship aero-
hydrodynamics. In our implementation, we will focus on the free surface sharpening strategy to minimize the 
smearing of the interface over time. For three-dimensional problems, iterative methods are almost mandatory in 
parallel implementation. The Generalized Minimal RESidual method (GMRES) has been widely used to solve large 
sparse systems. Because the GMRES algorithm involves only matrix-vector multiplication, it is unnecessary to form 
the Jacobian explicitly. The details of forming the Jacobian-vector production can be found in our previous paper 
[7].  

The present solver has been parallelized on clusters using the ParMETIS mesh partitioning and the MPI parallel 
programming module. Due to the data structures we use, we have communications requirement for nodes, faces and 
cells. Very efficient non-blocking MPI functions are called to set up the inter-processor “gather” and “scatter” 
routines in the pre-processing stage. Scaling test has been taken on an eight-core cluster. The cluster has ten nodes 
each containing two quad-core Intel Xeon processors at 3.0 GHz. Each node has 32 GB memory, and the nodes are 
connected by Infini-band. Intel Fortran and C compilers are used, together with OpenMPI. OpenMPI is fully 
compatible with Infini-band, and as a result the communication latency of our code is very low.  The scaling test is 
performed on a mesh of 25.2 million elements. Figure 1 shows the test results on 4, 8, 16, 32 and 64 processors. The 
CPU time of 4 processors is used as the baseline to compute speedup. The results show super-linear speedup. Figure 
2 shows the CPU time breakdown on 4 and 64 processors, which shows that the time spent on MPI communication 
increases slightly from 0% to 2% when number of processors increases from 4 to 64. This explains why our code 
scales very well. 

2. NUMERICAL EXAMPLES 

Composite High-Speed Vessel. Northrop Grumman Ship Systems (NGSS) is currently researching the affects of 
adding a blended wing body system, which incorporates lifting bodies and hydrofoils, to a composite high-speed 
vessel (CHSV). In modifying the composite monohull to include the blended wing body system, NGSS has included 
sponsons and aft amas into the concept. The principle dimensions of the vessel are shown in Table 1. 

The present code is used to perform CFD full-scale predictions and model test predictions of the CHSV at maximum 
design speed. The computational mesh has around 25.2M elements, and Figure 3 shows the mesh on the symmetry 
plane. In our final paper, a much refined mesh will be used and the computed results will be compared with those of 
the present mesh. Analysis was completed at a 3.677m static draft. Again, the speed of flow is 40 knots. The vessel 
displacement is 2000 metric tons, yielding a ship weight of approximately 1.96x107 Newtons. The vertical center of 
gravity is 4.68 meters above baseline and the longitudinal center of gravity is 27.95 meters forward of the transom. 
The temperature of the water is 15 degrees Celsius and the water density is 1025 kg/m3. Figure 4 plots the pressure 
distribution on the vehicle. The lift/weight ratio is computed to be 1.19, which means the lift generated by this 
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model is 19% greater than the weight of the vehicle. Figure 5 plots the time history of the dimensionless lift force 
generated by both pressure and viscous force. It shows that the lift force has reached its steady state.  

Table 1: CHSV Principle Dimensions 
Length Overall 90.60 meters 
Length Between Perpendiculars 73.58 meters 
Maximum Beam 22.30 meters 
Design Draft 3.677 meters 
Design Displacement 2,000 metric tons 
Maximum Design Speed 40 knots 
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Fig. 1: Parallel scalability test results.. 

Fig. 2: Pie-chart of the scaling test results. The values plotted are the CPU time percentage. 
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 (Top) 4 processors. (Bottom) 64 processors.

Fig. 3: Computational mesh on the symmetry plane. Note that the mesh is clustered near the vehicle and the free 
surface. The size of the mesh is around 25.2M elements. 

Fig. 4: Pressure contours on the vehicle body. 

Fig. 5: Time history of total lift and drag force.  



49

21st International Conference on Parallel Computational Fluid Dynamics
 

 

 

On the Parallelization of Particle Finite Element Method 
 

Pooyan Dadvand*, Riccardo Rossi**, Eugenio Oñate *** 

* CIMNE, C1 Building, North Campus-UPC, Gran Capitan, s/n, 08034, Barcelona, Spain 

(Tel: +34 93 401 60 38; e-mail: pooyan@cimne.upc.edu) 

** CIMNE, C1 Building, North Campus-UPC, Gran Capitan, s/n, 08034, Barcelona, Spain 

(Tel: +34 93 401 60 38; e-mail: rrossi@cimne.upc.edu) 

*** CIMNE, C1 Building, North Campus-UPC, Gran Capitan, s/n, 08034, Barcelona, Spain 

(Tel: +34 93 401 60 35; e-mail: onate@cimne.upc.edu) 

Abstract: The solution of problems involving free surface effects and large deformations of 

the computational domain constitutes a challenging problem. As examples we may consider 

the analysis of coastal structures subjected to the action of waves or the behavior of ships in 

heavy sea conditions. The Particle Finite Element Method (PFEM) provides an interesting 

approach for the solution of such problems. 

The key feature of PFEM is the use of a lagrangian approach for the computation of the fluid 

behavior together with a alpha-shape technique for the detection of the free surface. The use of 

a lagrangian approach for the solution of the fluid makes the remeshing process a necessary 

part of solution. 

Several existing approaches for the parallel solution of CFD problem are also applicable to 

PFEM [4, 2] fluid solver. On the other hand the remeshing process and the dynamic changes of 

the domain make its parallelization more complex than for traditional fixed mesh approaches. 

Since this method consists of several remeshing step a robust and fast parallel remeshing 

algorithm is required. A dynamic load balancing is an important complementary to the system 

in order to deal with moving meshes. 

In this presentation first we give a brief description of PFEM and its main advantages. Then 

we continue describing the main difficulties and their solutions in parallelization of PFEM for 

shared memory and distributed memory machines. 

Keywords: Particle Finite Element Method, Parallelization, Remeshing. 

 

1. INTRODUCTION 

The simulation of problems involving large free surface effects or significant variation in the shape of the 

computational domain, can be performed via a number of different techniques. Eulerian approaches such as level-set  

or volume-of-fluid, provide a computationally effective tool for the solution of a large variety of problems in the 

field. There exists however a number of problems for which alternative techniques need to be looked for. It has been 

proven once and again that Lagrangian techniques are able to fill this gap, thanks to their ability to track accurately 

the motion of particles and to apply exactly the B.C. on the free surface. The Particle Finite Element, which is the 

tool used in current work, is an example of such approaches. 

The basic idea relies on coupling the mathematical tools provided by the FEM with an aggressive Delaunay 

remeshing strategy that allows dealing with the changes in the computational domain. The characteristics of the 

method, and in particular the usage of Implicit solvers for the description of the fluid flow, make it very well suited 

for the simulation of problems involving large changes in the physical properties. The combination of FE solvers 

with remeshing tools on the other hand allow a fully modular approach, which allows taking advantage of the 

implementation effort made in the different specialized solvers. Unfortunately the nature of the formulation, which 

is based on a dynamically changing data structure, makes its parallelization demanding due to the needs of 

dynamically adapting the connectivity and the matrices used in the solution. 

The specific purpose of this work is to describe the progress in the parallelization of the technique, describing in 

particular the strategy that is currently being used towards an incremental parallelization of the method. 

2. PFEM 
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The Particle Finite Element Method is essentially based on the steps: 

• Lagrangian Prediction of the node Position 

• Meshing step and improvement of the existing mesh 

• Arbitrary Lagrangian Eulerian Solution of the problem on the top of the newly created mesh 

 

Both step 1 and step 3, require a solution of a differential problem, which is performed using a standard implicit 

finite element technology. Steps 2 requires a Delaunay reconnection of an existing cloud of nodes and the pass of a 

“Alpha-Shape” geometrical filter for the identification of the boundaries. The computational effort needed for the 

solution of the first and last steps can be estimated to be O(N
α
) with α=1.3~1.5 in our problems while the one for the 

Delaunay reconnection can be proved to be O(N logN). The immediate implication is that the time spent in the 

solution steps will dominate the overall solution cost for large problems. This ``theoretical'' prediction is proved by 

the measurements shown in Fig 1. This simple observation allows one to conclude that some significant advantages 

in the solution of large scale problems can be obtained by parallelizing the single field solvers involved. This lead to 

the choice of a two steps parallelization effort, in which the implicit fluid solver is parallelized first and the parallel 

remeshing is considered as a second step. 

The first step is performed using the Trilinos Library, leading to the definition of a parallel solver on a dynamically 

varying mesh. The second step is currently being performed and it is described in the next section. 

 

 

Fig. 1: Remeshing time for different number of nodes. 

3.  PARALLEL REMESHING 

As we mentioned in previous chapter the remeshing process is an essential part of the PFEM. The percentage of the 

solution time spent by the remeshing process is highly depended to the number of the nodes in the model. Figure 1 

shows the time percentage of remeshing process in relation with number of the nodes in the model. It can be seen 

that with increment of model size the relative time spend in remeshing decreases. Base on this fact a simple 

approach was to use a parallel solver with serial mesh generator. This approach can be used for small number of 

cpus but it is bounded to the limits of the Amhdal's law. 
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Even if the parallelization of Delaunay procedures is known to be an extremely difficult task, this is hopefully not 

the case for the reconnection of a cloud of existing nodes. A number of efforts in the field have been published in the 

recent past [3] at CIMNE and in other institutions. The technique that is currently being explored is based on a 

scalar oct-tree balancing of the cloud of nodes followed by a parallel remeshing of each of the domain separately. 

An overlap area is left unmeshed, and is covered by a scalar Constrained Delaunay step. 

Another approach is using local optimization techniques like edge flipping [1] for reducing and even eliminating the 

global remeshing process. The localness of these operations can be exploited to ensure the scalability of these codes. 

The methodology consists of remeshing the interior part of each partition in parallel and the interfaces in scalar. 
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Abstract: Scalability studies are performed for CFDShip-Iowa URANS/DES curvilinear (V4) 
and Cartesian (V6) solvers and calculations are performed using largest grids to date. V4-DES 
solution for DTMB 5415 with bilge keels at 20° static drift on 250M grid is analyzed including 
the instantaneous and mean separation flow patterns, vortical structures and associated 
instabilities, and turbulent kinetic energy (TKE) distribution and budget. V6 RANS solution of 
5415 bare hull at straight ahead condition on 276M grid is compared with benchmark V4-
blended k-ω/k-ε (BKW), V4-wall-function (WF), V4-DES results and EFD data to identify 
limitations of wall-layer modeling using WF for immersed boundary method (IBM).  

 
1. INTRODUCTION 

Large scale computations are important for ship flows as they enable resolution of small-scale physics, improve our 
understanding of turbulent and vortical structures, two phase flows and air entrainment, help in identifying modeling 
issues and develop better models. Herein, calculations are performed using largest grids to date for CFDShip-Iowa 
V4 and V6 solvers. The objective of this paper is to study scalability and identify scalability bottlenecks, and to 
validate V4 and V6 predictions. The scalabilities of V4 and V6 are studied up to 2300 processors. V4 simulation is 
performed for surface combatant 5415 with bilge keels at 20° static drift on 250M grid. The study focuses on 
analysis of the turbulent and vortical structures, associated instabilities including verification and validation (V&V). 
V6 simulation is performed for 5415 bare hull at straight ahead condition on a 276M grid using WF with y+ = 30 to 
identify limitations of wall-layer modeling using WF for IBM. For this case, V4-BKW, -WF simulations on 615K 
grid and -DES on 300M grid are also performed to obtain benchmark results. 

The general-purpose code V4 solves the URANS/DES equations in the liquid phase of a free-surface flow using 
level-set method [1] in either absolute inertial earth-fixed or relative inertial coordinates. The turbulence modeling is 
performed using two-equation BKW or anisotropic Reynolds stress (ARS) models and has DES and WF options. A 
multi-block dynamic overset grid interpolation using SUGGAR is used to allow relative motions between the grids 
for six degrees of freedom (6DoF) ship motions. The governing equations are discretized using cell-centered finite 
difference schemes on body-fitted curvilinear grids and solved using a predictor-corrector method. The pressure 
Poisson equation is solved using the PETSc toolkit. Message Passing Interface (MPI) based domain decomposition 
is used for high performance computing (HPC). V4 has several simulation based design (SBD) functionalities for 
ship resistance, propulsion, seakeeping and maneuvering.  

In V6 the URANS/DES/LES two-phase flow governing equations are solved in absolute inertial earth-fixed 
coordinates using IBM [2]. The interface modeling is performed using level-set, particle level-set or coupled level-
set and volume-of-fluid (CLSVOF) method [3]. The turbulence modeling is performed using either BKW/blended k-
g/k-ε (BKG) models with WF for URANS or a dynamic Smagorinsky model for LES. The governing equations are 
discretized using finite differences on a non-uniform staggered Cartesian grid and solved using a four-step 
fractional-step method. The pressure Poisson equation is solved using multi-grid PETSc or HYPER library. The 
code uses MPI based domain decomposition for solution on parallel processors and MPI-I/O. V6 is a research code 
which is being turned into a ship hydrodynamics code. The code has been previously applied to several fundamental 
problems such as wave breaking, bubble entrainment and air layer drag reduction. V6 has advantages over V4 for 
both accuracy and HPC. V6 requires about 50% less memory and 20-25% less CPU time/time-step/processor/grid-
point than V4 for a similar size grid. In the long term V6 has the potential to develop into an efficient and robust 
general-purpose solver. 
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2. CFDSHIP-IOWA HPC OPTIMIZATION AND SCALABILITY STUDY 

Carrica et al. [4] improved V4 HPC performance by optimizing serial and parallel execution of routines and overset 
grid assembly. Several inefficient routines were rewritten and unnecessary MPI barriers, collective MPI instructions 
were eliminated. Memory usage was improved to avoid shared memory and allow scalability on distributed memory 
machines. SUGGAR was implemented as a library such that it can be executed on a dedicated MPI rank.  

V4 strong scalability tests are performed for fixed sinkage and trim 5415, Re=4.85×106, Fr=0.28 using a 115M grid 
on NAVO’s IBM P6 DaVinci and CRAY XT5 Einstein. Weak scalability test were performed by Carrica et al. [4] 
on AFRL SGI Altix 4700 Hawk for fixed sinkage and trim KVLCC and 5415 geometries using 120K and 240K grid 
points per processors, respectively. Fixed sinkage and trim cases are chosen to avoid SUGGAR interpolation every 
time step. The solver CPU times are based on average of 10 time steps without I/O. As shown in Fig 1(a), V4 scales 
almost linearly up to 1024 processors and the speedup drops 37% below ideal scaling for 2048 processor on 
Einstein. Similar scaling is observed on DaVinci. On Hawk reasonable scalability is obtained only up to 512 
processors. About 71% of the CPU time is spent for solving the pressure Poisson equation. A fairly good weak 
scalability is observed up to 500 processors as shown in Fig. 1(b), even for different problems and for grid points per 
processor ratio of 2:1. The deviation from ideal scaling for the forward speed diffraction case (Fr = 0.28) using 
115M grid points is attributed to the saturation of memory on the nodes.  

Yang et al. [5] extended the one-dimensional slab decomposition in V6 to three directions for parallelization and the 
inter-processor communications for ghost cells were changed into non-blocking mode. Parallel I/O using MPI2 was 
implemented such that all processors read from and write to one single file instantaneously.  

V6 strong scalability tests are performed for fixed sinkage and trim 5415, Re=4.85×106, Fr=0.28 using 100M, 270M 
and 540M grids on DaVinci. Weak scalability tests are performed using 262K and 525K grid points per processor. 
The solver CPU times are based on average of 10 time steps without I/O. As shown in Fig. 1(a), V6 scalability drops 
by 25% and 33% below ideal scaling on 2048 processors for 540M grid and 270M grid on DaVinci, respectively. As 
expected, the scalability of the code improves when the grid size increases. The scalability on DaVinci is much 
better than that on Babbage, where performance drops by 20% even on 256 processors. Almost 92% of the CPU 
time is spent for the pressure solver, which dictates scalability of the solver. A weak scaling factor of 1 is expected 
as each processor handles the same amount of data. However, Fig. 1(b) shows that the CPU time increases with the 
number of processors. The deviation from ideal scaling is mainly affected by HYPRE, which requires extra levels of 
coarsening for finer grids leading to extra computational cost.  

 
Figure 1: (a) Strong scalability for V4 and V6 are compared with ideal scaling. (b) Weak scalability tests using 

120K and 240K grid points per processor for V4 and 262K and 525K grid points per processor for V6.  

3. 5415 WITH BILGE KEELS AT 20° STATIC DRIFT CONDITION USING V4 

SIMMAN workshop [6] included validation of 5415 at 10° static drift for which comparison error E=D-S, where D 
is EFD and S is solution, were 15.2%D, 3.0%D and 8.2%D for longitudinal force Xt, sway force Yt and yaw moment 
Nt coefficients, respectively. Sakamoto [7] performed calculations for 5415 at 10° and 20° static drift and obtained E 
up to 12%D, 11%D and 2%D for Xt, Yt and Nt, respectively. Sensitivity studies were performed using ARS, BKW 
and DES turbulence models and using fine grids up to 20M, which showed minimal improvements. One possibility 
for error was thought to be due to the absence of transition modeling in turbulence equations. Based on the URANS 
simulation here we construct a grid which has sufficient density to activate DES properly. E reduces significantly on 
this grid presumably due to correct prediction of cross-flow separation. 

a b 
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URANS/DES simulations are performed using BKW for fixed sinkage=1.92×10-3 and trim=0.136° 5415 with bilge 
keels at 20° static drift condition Re=4.85×106, Fr=0.28 and results are compared with EFD data [8]. The V&V 
study is performed following the quantitative methodology and procedures proposed by Stern et al. [9] using three 
systematically refined grids with �� � √3 consisting of 10M, 48M and 250 M points.  

Table 1 summarizes the V&V study for force and moment coefficients. The subscripts f, p and t correspond to 
frictional, pressure and total, respectively. UI ≤0.75%S1 for the force and moment coefficients on all the grids. For 
frictional coefficients UI/ε12<0.12, whereas for pressure coefficients UI/ε12>2.7. Monotonic convergence RG<0.52 is 
obtained for Xf, Xp and Xt, oscillatory convergence -0.62<RG<0.12 for Yf, Yp and Yt, oscillatory divergence for Nf, 
and monotonic divergence for Np and Nt. The correction factor CF<0.65 for Xf, and Xt, whereas CF=16.5 for Xp 
which is considered to be divergent. The observed order of accuracy pG for Xt is 3.29 close to theoretical order of 
accuracy pGth of 4. UG is 3.25%S1 for Xf and <1%S1 for Xt and sway resistance coefficients. Large UI/ε12 values for 
pressure coefficients indicate contamination of UG by UI. UG estimates could also be affected due the correlation of 
modeling and numerical errors in DES. 

Table 1: Resistance and moment coefficients verification study for 5415 with bilge keels at 20° static drift condition. 
Parameters EFD 

10M 
URANS 

DES Verification Study 
ε23% ε12% UI% UI/ε12 RG pG CF UG% UD% Uv%Grid 3:10M Grid 2: 48M Grid 1: 250M 

Xt×102 -2.865 -2.962 -2.879 -2.979 -2.996 3.33 0.55 0.38 0.691 0.164 3.29 0.64 0.44 7.9 7.92
 %EX  +3.39  +0.49  +3.98  +4.57 - 

Yt×102 15.29 16.631 16.088 15.821 15.860 1.68 0.22 0.74 3.364 -0.128 - - 0.63 4.1 4.21
 %EY  +8.77  +5.22  +3.47  +3.72 - 

Nt×102 5.935 6.098 6.042 5.997 5.855 0.77 2.42 0.70 0.289 3.13 - - - 1.3  
 %EN  +2.75  +1.82  +1.05  -1.35 - 

ε23=|(S2-S3)/S1|×100; ε12=|(S1-S2)/S1|×100 

 
Figure 2: (a) Time history and (b) FFT of longitudinal resistance coefficient are compared with EFD data [8]. 

 
 (a) 10 M grid DES                     (b) 250M grid DES                           (c) 10M grid DES                (d) 250M grid DES                         

Figure 3: (a), (b) Free-surface wave elevation and (c), (d) isosurfaces of Q=1000 obtained for static 20° drift 5415 DES 
simulations using 10M grid and 250M grids. Wave elevation contour levels are from -0.01 to 0.01 with intervals of 4×10-4.  

DES shows 4-5% lower E than URANS, and the best results are obtained on 48M grid where E<4%D. Results show 
UG <<UD, which suggests errors are dominated by modeling errors. The validation uncertainty UV =7.92%D for Xt 
and 4.21%D for Yt. E for the fine grid is 4.57%D<UV for Xt, and 3.72%D<UV for Yt. Thus both Xt and Yt are 
validated.  E≤1.82%D for Nt on all the grids, which is slightly larger than UD=1.3%D. FFT of Xt on 250M grid 
shows two dominant frequency zones τ=0.05 and 0.1 as shown in Fig. 2. Peak amplitudes at these periods are also 
observed in the EFD data. However, experimentalists [8] attributed these frequencies to the noise from carriage 
speed vibrations τ=0.05 and load-cell τ=0.1. 

Overall, the wave patterns are similar on all the grids. The small scale structure close to the hull and wave breaking 
patterns are resolved better on finer grids as shown in Fig. 3. Isosurfaces of Q in Fig. 3 for 10M grid shows sonar 
dome, bilge keel, aft-body keel, and port and starboard free-surface vortices. The sonar dome vortex exhibits helical 
instability breakdown. Kelvin-Helmholtz, Karman and flapping-type instabilities are observed on the leeward side. 

a b 

Sonar dome vortex Free-surface 
vortex 

Aft body keel vortex 

Bilge keel 
vortex 
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Further analysis is required to obtain frequency and scaling of these instabilities. In the 250M grid simulation sonar 
dome vortex is clearly visible, but the other vortices are masked by the massive cross-flow separation.   

4. 5415 BARE HULL AT STRAIGHT AHEAD CONDITION USING V6 

Simulations are performed for 5415 bare hull at straight ahead condition Re=4.85×106, Fr=0.28 using V6-WF with 
BKG for the half ship at fixed sinkage=1.92×10-3 and trim=0.136° using 34M with y+=150, 92M with y+=60 and 
276M with y+=30 grids. V6-WF results are compared with half ship V4-BKW, V4-WF results on 615K grid, V4-
DES on 300M grid and EFD [10] in Fig. 4.  

V4-BKW over predicts resistance coefficient by 5.6%D, V4-WF predictions are within 2%D and V4-DES results 
are within 2.6%D. The poor V4-BKW predictions could be due to the coarse grid resolution as Sakamoto [8] has 
shown errors less than 3% on a 1.27M grid. Further study is required using finer grids to obtain V4-BKW and V4-
WF benchmark solutions. The wave elevation patterns are predicted well in both V4 and V6 simulations on all the 
grids when compared with the EFD data. The wave pattern resolution improves with grid refinement. V4-DES and 
V6-WF with y+ = 30 results are in detailed agreement with EFD.  

 

 
Figure 4: Comparison of (a)streamwise velocity, (b) turbulent kinetic energy and (c) shear stress �′�′�����  distributions on x/L=0.935 
obtained using V4-BKW and V6-WF and (d) V4-DES boundary layer and wake profile at x/L=0.6 and 0.935with EFD data [10]. 

EFD mean flow pattern shows interactions between the hull boundary layer and sonar dome (near center plane) and 
after body shoulder (near mid girth) out-board rotating axial vortices. For the nominal wake plane, inboard of the 
axial vortex center and near the center plane, high momentum fluid is transported towards the hull thinning the 
boundary layer, whereas outboard of the vortex center low momentum fluid is transported away from the hull 
causing bulge in the boundary layer. The mean and turbulent nominal wake flow pattern shows similarity to the 
boundary layer and turbulence structures in the presence of common-down streamwise vortex pair. V4-BKW 
predicts the sonar dome rotating vortex and its interaction with boundary layer fairly well. However, the sonar dome 
vortex is over predicted at development and the after body shoulder vortex is not resolved well suggesting rapid 
dissipation of the vortex. At the nominal wake plane the boundary layer is thicker at center plane compared to the 
EFD data and the bulge is underpredicted due to weak vortex strength. The TKE and stress contours compare well 
with EFD qualitatively but not quantitatively. V4-WF predictions are similar to that of V4-BKW for mean velocity 
profiles, but has penalty in prediction of turbulence quantities. V6-WF results improve with decrease in y+ and has 
penalty similar to V4-WF. V6-WF with y+=30 over predicts the bilge vortex strength significantly resulting in over 
prediction of boundary layer bulge. TKE peak is observed to be at the center plane compared to y/L=0.01 in EFD 
and the peak value is overpredicted by about 40%. Both normal and shear stresses are also over predicted. 
Preliminary analysis of the V4-DES instantaneous solution shows that it captures the co-rotating vortices at mid-
girth and the bulge of the streamwise velocity is predicted better than V4-BKW at nominal wake plane.  

5. CONCLUSIONS 

Scalability study shows 37% and 25-30% speedup drop below ideal scaling on 2048 processors for V4 and V6, 
respectively. Weak scalability shows that the best results using V4 and V6 are obtained using 240K and 525K grid 

a a a b b b 

c c c d 
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points per processors, respectively. Thus it can be estimated that the largest simulation using V4 and V6 can be 
performed using 490M and 1billion grid points, respectively. The main scalability bottle neck is identified to be the 
pressure Poisson solver. Future simulations will be performed in close collaboration with software experts at ANL to 
address the scalability limitations of PETSc and HYPRE. Development of a domain decomposition version of 
SUGGAR is required to remove scalability limitations of V4 for dynamic motions. 

V4-DES V&V study for 5415 with bilge keels at 20° static drift simulation shows grid convergence with UG < 
3.5%S1 for both Xt and Yt, which are validated within 5%D uncertainty. FFT of force and moment coefficients show 
dominant frequency at τ=0.05 and 0.1. These dominant frequencies are also observed in the EFD, but were 
attributed to experimental noise. The 250M grid results show massive cross-flow separation and highly unsteady 
wave pattern with bow-wave breaking. Analysis of the volume solutions will be performed to study mean flow to 
identify the vortical structures, TKE and stress distribution and TKE budget to understand the mean turbulent 
structures. Mean flow will be subtracted from the instantaneous flow to study the vortex instabilities and organized 
turbulent vortical structures. Future work for V&V includes study using intermediate grids, reduction of UI and 
estimation of modeling and numerical error correlation in DES. The CFD results will guide the planned experiments 
for PIV flow field measurements. Load-cell measurements will be revisited to reduce experimental noise.  

In the 5415 at straight ahead simulation, both V4-DES and V6-WF provide detailed agreement of the wave pattern. 
V4-BKW provides reasonable results for the mean velocity, TKE and stress profiles, but fails to predict the sonar 
dome vortex strength accurately. WFs show penalty in flow prediction both in V4 and V6, where the latter shows 
the worst comparison with EFD. Best results using WFs are expected with y+=30, thus it can be concluded that wall-
layer modeling using WF for IBM has limitations for complex geometries. Preliminary V4-DES results show 
significant improvements over the V4-BKW. Mean flow will be obtained from V4-DES to identify the mean 
vortical structures, and the turbulence quantities at nominal wake plane will be compared with EFD data. Future 
work includes validation of force computations using V6 and obtaining V4-BKW and -WF benchmark solutions on 
appropriate grid. Future development of V6 includes weakly and strongly coupled wall layer (curvilinear orthogonal 
and non-orthogonal grids) with Cartesian background grid.  
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Abstract : We provide an overview of how fluid–solid and fluid–fluid interfaces can be
computed successfully with the CIP method[1, 2] based on adaptive Soroban-grid[3],
which was combined in for computation of 3D fluid–object and fluid–structure interac-
tions in the presence of free surfaces and fluid–fluid interfaces. This paper shows that
the combined technique can be extended to ocean research and ship hydrodynamics,
and our objective in this paper is to provide an easy-to-follow description of the key
aspects of the approach.
Keywords: Fluid–solid interface, CIP method, Soroban-grid

1. INTRODUCTION

Numerical analysis using Earth Simulator have succeeded in solving very large scale ocean and at-
mosphere researches. On the other hand, regarding small scale, high performance computing with Earth
Simulator will be also very effective in order to deal with fluid–solid interfaces for such as optimization
of ship designs.

In recent decades, a substantial number of finite element interface-tracking (moving grid) methods
have been developed for computation of fluid–solid interfaces, including fluid–structure interactions (see,
for example, [4, 5, 6]).

Accurate methods with more freedom from mesh moving and distortion concerns are always more
desirable. A method with such features was recently introduced in [7] by combining the CCUPmethod [8],
which is based on the Constrained Interpolation Profile/Cubic Interpolated Pseudo-particle (CIP) method
developed by Yabe et al. [1, 2] for solving hyperbolic equations, and the adaptive “Soroban grid” tech-
nique [3], which is an unstructured and collocated grid technique.

Although the solution technique is based on a collocated-grid approach, high-order accuracy and
robustness are maintained. The Soroban grid technique does not have any elements or cells connecting
the grid points, and therefore the approach is free from mesh (or grid) distortion limitations.

This paper is intended to introduce the Soroban-grid CIP Method for ocean research and ship design.
The CIP method and the Soroban grid technique are briefly described in Section 2. The test computations
are presented in Section 3 and the concluding remarks are given in Section 4.
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2. CIP METHOD AND SOROBAN GRID

The CIP method which has third-order accuracy in time and space is essentially semi-Lagrangian
scheme for solving hyperbolic equations, such as:

∂f

∂t
+ u

∂f

∂x
= 0. (1)

However, unlike conventional semi-Lagrangian schemes, the CIP method uses both values f and
spatial derivatives g = ∂f/∂x to make up cubic-interpolation between two grid points. For example
in one-dimension, when f and g are given at two grid points, the profile between these points can be
interpolated by cubic polynomial F (x) = ax3 + bx2 + cx+ d. Therefore, the profile at n+ 1 step can be
obtained transporting the profile by uΔt like fn+1 = F (x − uΔt), gn+1 = dF (x − uΔt)/dx.

ai =
gi + giup

D2
+
2(fi − fiup)

D3
, bi =
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D
, (2)

fn+1
i = aiX

3 + biX
2 + gn

i X + fn
i ,

gn+1
i = 3aiX

2 + 2biX + gn
i , (3)

where we define X = −uΔt and the supersubscript ”n” indicates the time step. Here, iup(= i −
sgn (ui)), sgn (ui) = 1 (ui ≥ 0) ,−1 (ui < 0) , D = −Δx · sgn (ui). Therefore, the value and its spatial
derivative at the next time step n+ 1 are explicitly given. It is possible to extend the scheme to more
than one dimension with a directional-splitting or non-directional-splitting technique.

The CIP method has recently been upgraded to include adaptive grids with assurance of both high-
order accuracy and robustness. The new grid system is called the Soroban-grid [3]. The schematics of
a Soroban grid is shown in Figure 1. The grid system consists of straight lines and grid points moving

x
y

z

i1 i1+1

j2+1

j2

j1+1
A(i1+1,η)A(i1,η)

(xi,yj)

T(ξ,η)

j1

Figure 1: Soroban grid arrangement. Left: 3D view. Right: view on a plane.

along those lines, like how it is in an abacus. The lines on a plane move in parallel, and the planes also
move in parallel. The length of each line and the number of grid points along each line can be variable.

To understand how advection equations are solved with the Soroban grid, let us consider the grid
lines and points on a plane shown in Fig. 1 (Right), where the vertical lines in the y-direction are spaced
in the x-direction, and the grid points move along each line. Let (xi, yj) be the point of interest. If its
upstream departure point T is given as (ξ, η)=(xi −uΔt, yj − vΔt), the solution fn+1 of (1) at (xi, yj) is
simply given by the value at T . As in the CIP formulation in the Cartesian grid, T must be interpolated
from the neighboring points.

Since this scheme uses only the one-dimensional CIP method without coordinate transformation, it
is able to retain the third-order accuracy in space and time even for deformed grids such as the one
demonstrated by Figure 10 in [3].
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3. NUMERICAL EXAMPLE

3.1 Incompressible flow past a circular cylinder

First application of the Soroban-grid CIP technique is incompressible flow past a circular cylinder at
Reynolds number is 100[9]. The dimensions of the computational domain are 60× 16 and the cylinder is
located at (8, 8), where the values are normalized by the cylinder diameter. The location of the cylinder
and the lateral dimension of the domain are the same as those reported in [10]. The no-slip boundary
condition is imposed on the cylinder surface, and inside the cylinder both velocity components are set
as u = v = 0. The number of grid points is initially about 4,000, eventually increased up to 9,000.

Figure 2 shows an initial grid arrangement and a snapshot of the adaptive grid. It can be seen that
Soroban-grid are concentrated on generated Karman vortex. The computed values for the drag and lift
coefficients (CD, CL) and the Strouhal number are 1.375 ± 0.009, ±0.27 and 0.16. These values are in
good agreement with those reported in [10].

Figure 2: Flow past a cylinder. The Soroban lines are parallel to the vertical (y) axis. Top: initial grid
arrangement. Bottom: snapshot of the adaptive grid.

3.2 Hydrodynamics of a container ship

The ship used in this test computation is modeled after a 5500 TEU container ship and is 284 m
long[11]. It is cruising at 10 m/s and is undergoing rigid-body motion with 5 degrees-of-freedom. The
water depth is 50 m. The Froude number is 0.19. The computational domain is translating with the
ship. The condition we specify at the inflow boundary is the third-order Stokes wave with the wave
length and height set at 284 m and 16 m. The lateral boundaries have slip conditions, and the outflow
boundary has no condition specified.

The computation is carried out for 100 s. Figures 3 and 4 show the ship and the water surface at
t = 17.9 s and 24.5 s. Figure 5 shows the diver’s view of the ship and the water surface at t = 24.5 s,
together with the Soroban grid lines and points at that instant.

4. CONCLUSIONS

It is shown by the basic example of flow past a cylinder and the realistic simulation of the hydrody-
namics of a container ship in this paper that the CIP-CUP method in combination with the adaptive
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Figure 3: Hydrodynamics of a container ship. The
ship and the water surface at t = 17.9 s.

Figure 4: Hydrodynamics of a container ship. The
ship and the water surface at t = 24.5 s.

Figure 5: Hydrodynamics of a container ship. Diver’s view of the ship and the water surface at t = 24.5 s,
together with the Soroban grid lines and points at that instant.

Soroban grid technique can be used for 3D fluid–object and fluid–structure interactions in the presence of
free surfaces and fluid–fluid interfaces. The Soroban-grid technique, because of its unstructured nature,
brings geometric flexibility and makes it possible to generate suitable grids around complex shapes. Al-
though the solution technique is based on a collocated-grid approach, high-order accuracy and robustness
are maintained.
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Abstract: We present a brief overview of the Roadrunner hybrid architecture, followed by a 

summary of the original code to be adapted. The coding challenges of porting the CFDNS 

compressible Navier-Stokes solver to the hybrid architecture will be discussed, along with the 

code modification predicated by the serial speedup on the CBE. Performance results from the 

initial stages, performed on the single-precision development system, through to the current 

full simulations, which will be ongoing at the time of the talk, will also be presented. We 

observe that the overall coding effort, and benefits realized, are considerable, but many of the 

global modifications to the code will be applicable to a variety of future directions in high-

performance computing. 

Keywords: turbulence, hybrid architecture, petascale, Roadrunner 

 

1. INTRODUCTION 

Petascale computing is expected to bring a number of breakthroughs in science. One of the areas most likely to 

benefit is fluid turbulence, where very large scale computations can provide insight and indicate appropriate 

modelling paradigms for the routine coarse mesh calculations needed in applications. Rigorous modelling 

techniques for the unclosed or sub-grid terms are essential to facilitate the use of these low-resolution calculations in 

science-based prediction. Turbulence and turbulent mixing are essential in many physical applications. Although 

important progress has been made in recent years in our understanding of turbulence, complete quantification, 

prediction, simulation, and control still eludes us. The problem is due in large part to the very broad range of 

dynamically relevant spatio-temporal scales. 

Turbulence theory and the subsequent model development rely on experimental or high resolution Direct Numerical 

Simulations (DNS) data for development and verification and validation. The DNS technique seeks “exact'' 

solutions to the governing equations, so that all relevant scales are accurately solved, using high resolution 

numerical simulations based on high order accuracy discretization algorithms. DNS are conducted without resorting 

to subgrid modelling or the introduction of “artificial'' numerical dissipation or other algorithm stabilizing schemes. 

This offers a degree of control and wealth of information pertaining to the physics of turbulent mixing inaccessible 

in experiments. The DNS generated database can be used to examine the physics of turbulence, both as a test of 

modelling ideas as well as a benchmark for verification of other (non-DNS) codes. With the recent advances in 

supercomputing technology and algorithms, it is now possible to perform simulations at Reynolds numbers 

comparable or even larger than those obtained in large laboratory experiments. In addition, very large DNS are 

starting to be performed for more complex flows, beyond the few canonical flows which have traditionally been the 

subject of the largest simulations. For example, our recent 1024
3
 simulations of two-component, buoyancy driven 

turbulence revealed an unexpected asymmetry in the mixing [1] (Figure 1), not captured by current experiments of 

similar flows due to the low resolution of the density measurements. This asymmetry was also confirmed in a more 

complex flow, a 3072
3
 simulation of the Rayleigh-Taylor instability [2], and may explain the bubble-spike anomaly 

(higher velocities on the light fluid side compared to the heavy fluid side), which is a long-standing open problem in 

this flow.  
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2. SYSTEM OVERVIEW AND BACKGROUND 

Roadrunner uses heterogeneous compute nodes.  Each consists of two AMD Opteron dual-core microprocessors, 

communicating  via PCIe connections with two pairs of enhanced double precision Cell microprocessors, or Cell 

Broadband Engines (CBEs). The four Opteron cores have non-uniform memory access to 16 GB of DDR2 RAM, 

while each pair of CBE’s has non-uniform access to 8 GB DDR2 RAM.  The disjoint nature of the memory spaces 

requires the programmer to explicitly transfer data between them.  Notably, only the Opterons have access to the 

Infiniband cluster interconnect; the CBEs therefore function as accelerators to the Opterons. To date, application 

codes have maintained the one CBE per Opteron ratio, though this is not required by the system architecture.   

Each CBE is itself a heterogeneous system with one PowerPC core (PPE) and 8 Synergistic Processing Element 

cores (SPEs).  The Element Interconnect Bus (EIB) connects the SPEs, the PPE, and Cell main memory; the EIB 

sustains 25.6 GB/s aggregate bandwidth between SPEs and main memory. The SPEs are simple, low-power, in-

order vector cores with large uniform register files.  An SPE loads and stores data and instructions from a 6-cycle 

latency 256KB local store that, while reminiscent of an L2 cache, is not coherent with main memory.  Instead, the 

programmer explicitly moves data between main memory and the SPE’s local store using the SPE’s Memory Flow 

Controller (MFC).  Each SPE supports 16 memory transfers in flight concurrently.   

The full machine has 3060 compute nodes; 180 compute nodes and 12 I/O nodes are joined into a connected unit 

(CU); 17 CUs are connected by a second switch stage.  Roadrunner was the first to break the petaflop/s barrier, and 

it did so more efficiently than normal at this scale.  While Roadrunner is #1 on the June and November, 2008 

Top500 lists [3], it is also #7 on the November, 2008 Green500 list [4]—becoming the first #1 Top500 machine to 

place in the top 10 for efficiency. Roadrunner is cited for "extraordinary energy efficiency... For comparison, the last 

two supercomputers to top the TOP500 are #43 and #499 on the Green500." [5] 

3. CFDNS OVERVIEW 

The CFDNS code solves the Navier-Stokes equations (both compressible and incompressible cases) and species 

transport equations on structured grids. Cartesian, cylindrical, and spherical coordinates are allowed. The spatial 

derivatives are evaluated using compact (Pade) finite differences, with very low numerical dissipation. Schemes 

with sixth order accuracy are used in the present version. Compared to central finite differences of the same order, 

compact schemes provide a better representation of the shorter lengthscales, which is an important aspect in 

turbulence calculations. This feature brings them closer to spectral methods, traditionally used in DNS of turbulent 

flows, while maintaining freedom in choosing the mesh geometry and the boundary conditions. Compact schemes of 

Figure 1: Mixing between two fluids with different densities.  Initially there are equal amounts 

of the fluids (a). As the mixing proceeds, there is a clear asymmetry between the amount of pure 

light fluid (red) and the pure heavy fluid (blue) left in the flow (b). 
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the same order also require a smaller stencil than central schemes, which improves the accuracy and efficiency of 

the boundaries treatments. The derivative calculations require solutions of linear tridiagonal systems. The rest of the 

calculations require point-wise updates of various quantities and are cache friendly and easily parallelized or 

vectorized. The time advancement is performed using the variable time stepping explicit Runge-Kutta-Fehlberg 

(RK45) scheme. The boundary conditions can be either periodic or non-reflecting inflow/outflow and/or walls. 

4. ROADRUNNER PROGRAMMING CHALLENGES 

The doubly heterogeneous computing environment of the Roadrunner system introduces new complexity into the 

programming model.  In practice, most application codes have used the Opterons to implement a standard SPMD 

MPI program, and then offloaded some significant amount of work to the CBE.  The CBE program divides this 

work into a multithreaded application, with one thread running on each SPE.  The PPE coordinates communication 

between SPE threads and the Opteron, and the Opterons coordinate inter-rank communication, in addition to any 

other work they may be assigned.   

Programming challenges then include developing the three programs required by the Opteron, PPE, and SPEs.  Data 

motion must be programmed explicitly.  The programmer employs Cell-specific C language extensions, or 

intrinsics, in order to use the SPE’s memory flow controller and to make best use of its vector instruction set (this 

last point is no different than SSE programming).  The SPE’s 256 kB local store requires judicious use, though 

again, this is not tremendously different from cache-aware programming.  However, the changes to underlying data 

structures and algorithms induced by Roadrunner are shown to be advantageous to all of the current high-

performance hybrid and conventional acceleration frameworks (Cell, GPU, SSE) and are therefore fundamentally 

necessary to leverage future architectures.  From this perspective, Roadrunner is a conservative machine, a bridge 

between yesterday’s homogeneous clusters and tomorrow’s heterogeneous hardware.  

5. HYBRID CODE LAYOUT 

Here we discuss the overall layout of the RRDNS code, and show how the choices are dictated by the architecture. 

5.1 Division of Work 

The bulk of Roadrunner's compute power lies in the Cells, with only ~50 Tflops attributed to the Opterons. This, 

combined with the need to minimize communication across the PCIe and Infiniband channels, dictates that the 

application reside primarily on the Cell blades. Similarly, all MPI and storage functions must reside on the Opterons, 

since the Cells have no direct access to the network fabric. Note that while this requires the conversion of almost all 

the original code to SPE-specific versions, it also serves to mask the heterogeneity of the architecture to some 

extent, except where that can be leveraged to improve performance.  

5.2 Reorganization of Data Structures 

The SPEs are vector processors, operating on 128-bit quadwords as their fundamental unit. While scalar code is 

supported by the compiler, this may be significantly slower than vector code and should be avoided. The underlying 

data structure of the original CFDNS code was an 'array of structures' (AOS) type, with all variables at a single grid-

point laid out contiguously in memory, which offers some advantages when same operations are applied to all the 

variables. The internal data structures of the RR code use ‘structure of arrays’ (SOA), with the (arbitrarily chosen) z-

direction contiguous in memory. This provides a natural vectorization of all point-wise operations, which are the 

bulk of all sweeps through the data. The need for offset (stencil-type) operations is minimized by the use of Pade 

compact finite difference schemes, which means that all derivatives are precomputed and thus appear only as 

element-wise multiply-add operations in the update equations. However, this also reduces the arithmetic intensity of 

the update equation and increases storage requirements. The regular data layout pattern of a structured grid leads to 

natural shared-memory division of data and work within each cell, with no memory conflicts.  

5.3 Reorganization of Communication Patterns 

The performance of the CBE produces greater than order-of-magnitude speedup over the Opteron-only local 

compute performance, resulting in an imbalance between compute and communication compared to an 
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unaccelerated cluster. As a result, this requires a re-examination of the original communication patterns to absolutely 

minimize latency and data movement. Additionally, we recognize that algorithmic changes that result in more local 

computation but less inter-node communication may be advantageous on this architecture, whereas they might not 

on a conventional cluster. This leads us to totally re-design the tri-diagonal solver algorithms; the new form requires 

twice as much local computation, but significantly less data movement, and allows significantly better performance 

of the parallel solver than would otherwise be possible. 

6.  PERFORMANCE RESULTS 

The serial speedup of the Cell version of the code is approximately 50x [6], which is shown to be reasonable when 

considering the clock speed, parallelism and vectorization afforded by the Cell. Notably, the excellent performance 

of the individual memory controllers is responsible, since the low arithmetic intensity of the algorithm does not 

allow the actual compute power of the SPEs to be utilized. This serial speedup prompted us to perform significant 

modifications to the parallel code design, as indicated above, since the original data movement patterns would have 

limited parallel speedup to ~ 5x. Following this redesign, the parallel code exhibits overall speedup in the range of 

20x compared to the Opteron-only version [7]. 

7. CONCLUSIONS 

The overall effort required to adapt the CFDNS code to the Roadrunner hybrid architecture was considerable, but 

the benefits in terms of performance improvements are likewise significant.  Several of the improvements prompted 

by this work can be introduced into conventional versions of the code, with varying results, and would likely not 

have been attempted without the need to completely rewrite the code for the CBE architecture.  

In general, porting of more complex codes will likely require significant language and/or compiler improvements to 

be feasible. However, the changes made to the underlying data structures and algorithms will likely be beneficial on 

most future architectures and accelerators, due to the trend towards more vector processors (e.g. Cell, GPU, SSE). 

This commonality means that the changes outlined here will lead to improved code performance on many emerging 

architectures for the foreseeable future. 
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Abstract: This paper provides a perspective on high-performance computing as an enabler for
high-fidelity simulations of turbulent combustion processes typically encountered in a variety of
propulsion and power systems. We focus on recent experiences on the Oak Ridge National Labora-
tory (ORNL) National Center for Computational Sciences (NCCS) Cray-XT Platforms (i.e., Jaguar)
using a unique massively-parallel flow-solver designed for application of the Large Eddy Simulation
technique called RAPTOR.
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1. INTRODUCTION
Application of the Large Eddy Simulation (LES) technique provides the formal ability to treat the full range of

multidimensional time and length scales that exist in turbulent reacting flows in a computationally feasible manner.
The large energetic-scales are resolved directly. The small subgrid-scales are modeled. This allows simulation of
the complex multiple-time multiple-length scale coupling between processes in a time-accurate manner. The com-
bination of LES, high-performance massively-parallel computing, and advanced experiments in combustion science,
offer unprecedented opportunities for synergistic, high-fidelity investigations aimed at the development of accurate
predictive models. Here we describe what the science drivers are, the related computational demands, and present
a set of recent examples. Emphasis is placed on the performance achieved, significant solution results produced as
a consequence, and the combined computational effectiveness of the NCCS Cray-XT platforms (Jaguar(pf)) and our
flow solver RAPTOR.

1.1. Science Drivers
Turbulent combustion processes are prevalent in a wide variety of propulsion and power systems including internal-

combustion (IC) engines, gas-turbines and liquid-rockets. As such, development and rigorous validation of science-
based predictive models for turbulent combustion is recognized as an important priority in research and there are a
variety of challenges. Turbulent flows involving heterogeneous chemically reacting mixtures (as is the case for all
propulsion and power systems) have a variety of complicating factors including highly nonlinear chemical kinetics,
small-scale velocity and scalar-mixing, turbulence-chemistry interactions, compressibility effects (volumetric changes
induced by changes in pressure), and variable inertia effects (volumetric changes induced by variable composition
or heat addition). Coupling between processes occurs over a wide range of time and length scales, many being
smaller than can be resolved in a numerically feasible manner. Further complications arise when multiple phases are
present due to the introduction of dynamically evolving interface boundaries and the complex exchange processes that
occur as a consequence. At the device level, high-performance, dynamic stability, low pollutant emissions, and low
soot formation must be achieved simultaneously in highly confined geometries that generate extremely complex flow
and acoustic patterns. Flow and combustion processes are highly turbulent (i.e., integral-scale Reynolds numbers of
O(105) or greater), and the turbulence dynamics are inherently dominated by geometry or various operating transients.
In many cases operating pressures approach or exceed the thermodynamic critical pressure of the fuel or oxidizer.



69

21st International Conference on Parallel Computational Fluid Dynamics

Figure 1: Key experiments currently being studied using RAPTOR. A subset of experiments associated with the Reacting Flow
Research program are shown on the left (a,b: Simple jet flames, c,d: Piloted jet flames, e: Bluff-body; f: Bluff-body with swirl).
A subset of experiments associated with the Advanced Engine Combustion program are shown on the right (g: Constant-volume
Diesel combustion facility, h: Typical single-cylinder optically accessible IC-Engine).

Operation at elevated pressures significantly increases the system Reynolds number(s) and inherently broadens the
range of spatial and temporal turbulence scales over which interactions occur.

The limitations and challenges associated with turbulent combustion research requires that a hierarchy of ap-
proaches be taken to fully understand key processes and work toward predictive models. The primary challenge is
to bridge the gap between basic research and the conditions of interest in typical applications. As part of the React-
ing Flow Research and Advanced Engine Combustion programs at Sandia National Laboratories (SNL) Combustion
Research Facility (CRF), two complementary projects have been established to achieve this goal. The first is funded
under the DOE Office of Science (OS), Basic Energy Sciences (BES) program, and focuses on LES of turbulence-
chemistry interactions in reacting multiphase flows. The second is funded under the DOE Office of Energy Efficiency
and Renewable Energy (EERE), Office of Vehicle Technologies (OVT) program, and focuses on the application of
LES to high-pressure, low-temperature, IC-engine combustion research. Figure 1 shows key experiments currently
being studied under these two projects. A subset of experiments associated with the Reacting Flow Research program
are shown on the left. A subset of experiments associated with the Advanced Engine Combustion program are shown
on the right. Objectives and milestones for both projects are aimed at establishing high-fidelity computational bench-
marks that identically match the geometry and operating conditions of key target experiments using a single unified
theoretical-numerical framework (i.e., RAPTOR).

Flames studied under Reacting Flow Research (see a-f in Fig. 1 for example) are internationally recognized bench-
marks that provide some of the most detailed experimental data available for model validation. Using these data,
significant collaborations with key modeling groups worldwide have been established as part of the International
Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (see Barlow et al. [1] for details). The
“TNF Workshop” is an ongoing collaboration among experimental and computational researchers. A central theme
of the series has been to use detailed comparisons of results from experiments and multiple modeling approaches to
quantify state-of-the-art capabilities and identify future research needs toward predictive simulations. As part of this
activity, RAPTOR has been used to provide benchmark simulations that reach beyond the capabilities and resources
of most universities and industry in a manner consistent with a National Laboratory’s role of using high-performance
computing. In contrast to the TNF flames, research activities related to Advanced Engine Combustion are focused
on IC-engines. Needs and milestones related to RAPTOR have been established in three critical areas: 1) perform
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a progression of LES studies focused on the CRF optically accessible hydrogen-fueled IC-engine (see h in Fig. 1),
2) establish a parallel task focused on homogeneous-charged compression-ignition (HCCI) engines, and 3) perform a
series of supporting studies focused on the development and validation of multiphase injection and combustion mod-
els with emphasis placed on direct-injection processes in IC-engines (see g in Fig. 1). The integrated set of research
includes an optimal combination of in-cylinder and canonical (out-of-engine) studies to validate and understand key
phenomenological processes that are present in IC-engine flow environments.

Milestones associated with the cases shown in Fig. 1 are all “grand-challenge” in nature and require significant
amounts of CPU time (i.e., approximately 1 to 5-million cumulative CPU hours per case). In general, three distinct
technical capabilities are required simultaneously: 1) an established theoretical-numerical framework, 2) specialized
massively-parallel software that scales efficiently on O(104 − 105) processors, and 3) access to ”capability-class”
computers (which, as defined by the DOE, are platforms designed to provide a small number of users large amounts
of CPU time to perform heroic “grand-challenge” calculations). Items 1 and 2 are facilitated by our flow solver,
RAPTOR. Item 3 is facilitated in collaboration with Oak Ridge National Laboratory as part of the 2009 INCITE
project entitledHigh-Fidelity Simulations for Clean and Efficient Combustion for Alternative Fuels. Key details related
to RAPTOR are listed below. Details associated with the ORNL Cray-XT platforms can be found at www.nccs.gov.

1.2. Theoretical-Numerical Framework
RAPTOR is a massively parallel flow solver designed specifically for application of the Large Eddy Simulation

(LES) technique to turbulent, chemically reacting, multiphase flows. It solves the fully coupled conservation equa-
tions of mass, momentum, total-energy, and species for a chemically reacting flow system (gas or liquid) in complex
geometries. It also accounts for detailed chemistry, thermodynamics, and transport processes at the molecular level
and uses detailed chemical mechanisms. The code is sophisticated in its ability to handle complex geometries and a
generalized subgrid-scale model framework. It is capable of treating spray combustion processes and multiphase flows
using a Lagrangian-Eulerian formulation. The numerical formulation treats the compressible form of the conservation
equations, but can be evaluated in the incompressible limit. The theoretical framework handles both multi-component
and mixture-averaged systems. The baseline formulation also employs a general treatment of the equation of state,
thermodynamics, and transport properties that accommodates real gas or liquids with detailed chemistry (i.e., not
constrained to ideal gas applications). Details are given by Oefelein [2].

The temporal integration scheme employs an all Mach number formulation using the dual-time stepping technique
with generalized preconditioning. The approach is fourth-order accurate in time and provides a fully-implicit solu-
tion using a fully explicit (highly-scalable) multistage scheme in pseudo-time. Preconditioning is applied on an inner
pseudo-time loop and coupled to local time-stepping techniques to minimize convective, diffusive, geometric, and
source term anomalies (i.e., stiffness) in an optimal manner. The spatial scheme is designed using non-dissipative,
discretely-conservative, staggered, finite-volume differencing. The discretization is formulated in generalized curvi-
linear (i.e., body-fitted) coordinates and employs a general R-refinement adaptive mesh (AMR) capability. This allows
us to account for the inherent effects of geometry on turbulence over the full range of relevant scales while signifi-
cantly reducing the total number of grid cells required in the computational domain. Treating the full range of scales
is a critical requirement since turbulence-chemistry interactions are inherently coupled through a cascade of nonlinear
interactions between the largest and smallest scales of the flow. The second-order accurate staggered grid formulation
(where we store scalar values at cell centers and velocity components at respective cell faces) fulfills two key accu-
racy requirements. First, it is spatially non-dissipative, which eliminates numerical contamination of the subgrid-scale
models due to artificial dissipation. Second, the stencils provide discrete conservation of mass, momentum, total en-
ergy and species, which is an imperative requirement for LES. This eliminates the artificial build up of velocity and
scalar energy at the high wavenumbers, which causes both accuracy problems and numerical instabilities in turbulent
flow calculations.

The code framework is massively-parallel and has been optimized to provide excellent parallel scalability attributes
using a distributed multiblock domain decomposition with generalized connectivity. Distributed-memory message-
passing is performed using MPI and the Single-Program–Multiple-Data (SPMD) model. It accommodates complex
geometric features and time varying meshes with generalized hexahedral cells while maintaining the high accuracy
attributes of structured spatial stencils. The numerical framework has been ported to all major platforms and provides
highly efficient coarse- and fine-grain (i.e., weak and strong) scalability attributes. The code is fully vectorized and has
been optimized for both vector and commodity architectures. Further optimization is currently in progress to account
for new issues associated with state-of-the-art multi-core technology. The complete package is fully modular, self-
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Figure 2: To the left is a photograph of the DLR-A flame in the experimen-
tal test section (corresponds to b in Fig. 1). At center is the corresponding
solution from LES. To the right are representative comparisons between ex-
perimentally measured (symbols) and modeled (lines) results showing ac-
ceptable agreement.

Figure 3: Strong (fine-grain) scaling attributes ex-
hibited by RAPTOR on the ORNL NCCS CRAY-
XT4 (Jaguar).

contained, and written in ANSI standard Fortran 90. The complete theoretical-numerical framework (i.e., governing
equations, physical submodels, numerics and , parallel efficiency) has been extensively validated over the last 17 years.
Representative results can be found in Refs. [3–7].

2. REPRESENTATIVE RESULTS
Porting the RAPTOR software framework to the NCCS Cray-XT platforms (Jaguar(pf)) was fairly routine with

no major problems. A representative set of results are shown in Figs. 2 and 3. To the left in Fig. 2 is a photograph of
the DLR-A flame in the experimental test section at Sandia. This flame corresponds to b in Fig. 1. At center is the
corresponding solution from LES, which was implemented by gridding the entire experimental test section. The total
grid size was 10,285,056 computational cells. The plots to the right in Fig. 2 show comparisons between numerical
results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data (symbols). Here we show mean
and RMS profiles. These results, coupled with similar comparisons performed throughout the domain, provide a
validated level of confidence in the accuracy of the solution.

Using the case shown above, the computational performance was evaluated in two stages. First, we performed a
series of strong and weak scaling studies to determine the baseline performance for both modes of operation. Second,
we benchmarked the serial performance of the code to establish an initial baseline with respect to performance on
a per core basis (i.e., percent of peak). Figure 3 shows a representative set of strong (fine-grain) scaling attributes
exhibited by RAPTOR on up to 20,000 processor cores. Results were obtained by holding the total grid size fixed
and successively increasing the number of processors used to perform the calculation. Note that this particular case
produces an extremely fine-grain test where the percent of communicated grid cells per processor was approaching
40 percent of the total. Maintaining the level of performance indicated for such a fine-grain decomposition can be
attributed to the explicit nature of the solver. Our dual-time stepping methodology provides the fully-coupled implicit
solution to the governing equations, but achieves this by iterating within an inner pseudo-time loop using an explicit
multistage scheme.

More recently, we have initiated a series of weak scaling studies. The computational performance was simultane-
ously evaluated by using a CrayPAT instrumented executable in place of the original. The program was instrumented
to provide hardware performance counter information from start to finish. The simulation was performed using 47,616
processor cores on the Cray XT5 system. The CrayPAT output was postprocessed using pat report. On average, each
processor core performed 7.94-billion floating point operations leading to an aggregate of 378-trillion floating point
operations being performed by the 47,616 cores. We measure the computational performance of RAPTOR for a given
problem using the metric

Performance = CPU time / Number of Grid cells / Number of time-steps,

where CPU time is the product of two quantities: (i) wall-clock time taken from start to finish of the time integrator
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portion of the solver, and (ii) the number of processor cores occupied by the job while the program was executing.
For the benchmark run, the code’s internal timers reported that the time integration through 50 time-steps took 1034
seconds. The remaining time (approximately 300 seconds) was consumed by the initialization step when the com-
putational mesh and initial condition information were read from the disk and the software prepared itself for the
simulation. Therefore, the performance of RAPTOR during the benchmark simulation was

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time-steps = 0.096.

It cost 96-milliseconds of processor time per cell per time-step to simulate the problem on 47,616 cores. Subsequent
runs are being performed by systematically increasing the total CPU time required (i.e., total number of floating point
operations per case) by factors of 2 as a function of increasing jet Reynolds number. Our goal is to demonstrate that
we can simulate successively larger problems in the same amount of time on this platform. Details related to these
studies will be provided in the paper.
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Abstract: We are currently seeing a trend towards multi- and many-core based parallel systems.
In order to exploit such architectures efficiently, applications must make use of all cores within
a CPU and consequently have to be able to deal with additional problems caused by this trend,
including shared caches, increased memory contention and limited off-chip bandwidth. In this
work we investigate the impact of such architectures on the parallel CFD code Miranda and
present preliminary results. We study the code on several current multi-core systems and show
that, while not a problem just yet, future systems may pose substantial hurdles.
Keywords: Miranda, Fluid Dynamics, Performance Evaluation, Multicore

1 INTRODUCTION

Miranda is a high order 3D hydrodynamics code for computing fluid instabilities and turbulent mixing. It is primarily
used to study Rayleigh-Taylor (R-T) and Richtmyer-Meshkov (R-M) instabilities, which occur in supernovae and
inertial confinement fusion. Figure 1 shows a sample result from a simulation of a turbulent state of a Rayleigh-Taylor
instability. The application uses a massively parallel spectral/compact solver for variable-density incompressible flow,
including viscosity and species diffusivity effects [2, 1].

Miranda has been run successfully on a variety of machines, including LLNL’s large scale Blue Gene/L (BG/L)
system [3]. Figure 2 shows the speedup results of a scaling study on up to 65,536 nodes. Weak scaling results (fixed
workload per node) are shown on the left side of Figure 2 and strong scaling results (fixed problem size) on the right.
The weak scaling results show that Miranda yields near perfect scaling on the BG/L architecture. Furthermore, the
numbers for strong scaling show a superlinear speedup for up to 32K nodes and only a slight degradation on 64K
nodes.

Figure 1: Turbulent state of Rayleigh-Taylor in-
stability. Light fluid (density=1) is blue and heavy
fluid (density=3) is red.

However, future architectures will impose new challenges on the
scaling behavior of CFD codes, such as Miranda. In particular, the
trend towards many- and multi-core chips will have a significant
impact on codes’ performance. LLNL’s systems already reflect
this trend: Blue Gene/L (BG/L) was limited to only two cores per
node, while its successor, Blue Gene/P (BG/P) features four cores
per node, and the recently announced Sequoia machine at LLNL
will offer close to 100,000 nodes with an estimated 16 cores per
node totalling 1.6 million cores [4].

We must understand the application performance impact of this
architectural trend of increasing core counts per node. We present
initial experiments that study its impact on the Miranda code. We
use both a 2D and 3D molecular Dynamics Kelvin-Helmholtz
computation and discuss performance results from runs on BG/L,
BG/P and a quad-core/quad-socket Linux cluster. Our results
show that Miranda can efficiently exploit these current architec-
tures. However, our experiments also indicate that we will require
new techniques for future systems with even larger core counts.
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Figure 2: Weak (left) and strong (right) scaling performance of Miranda on BG/L. The weak scaling runs had a
16× 16× 2048 point grid per node. The strong scaling runs used 2048× 2048× 512 total grid points.

2 MIRANDA: DESIGN AND IMPLEMENTATION OVERVIEW

Miranda employs FFTs and band-diagonal matrix solvers for computing spectrally-accurate derivatives, combined
with high-order integration methods for time advancement; e.g., fourth-order Runge-Kutta. Fluid properties, i.e.,
viscosity, diffusivity and thermal conductivity, are computed from kinetic theory. The code contains solvers for both
compressible and incompressible flows. Very large simulations, using over 1000 grid points in each direction, are
needed to support the large range of length scales necessary to grow R-T and R-M instabilities to full turbulence.
Smaller simulations simply cannot capture true rates of growth and mixing due to initial and/or boundary effects.

Miranda’s two core tasks are solving FFTs required by the Poisson solve and computing compact implicit derivatives
f  from function f . The latter requires solving a linear matrix problem in the form of the equation Af  = Bf with A
being a pentadiagonal matrix and B a heptadiagonal matrix. To achieve this, Miranda employs a parallel direct solver
method for block distributed pentadiagonal matrices. In this method, local (incomplete) pentadiagonal solutions are
performed on each process, boundary data is gathered across the communicator to form a global overlap solution,
and then each process uses the overlap solution to complete the global solution. Computing the right-hand side of
the equation requires sharing planes of boundary data with nearest neighbors; e.g., for the heptadiagonal matrix B, 3
planes of data must be exchanged at each boundary with paired MPI Sendrecv calls. The pentadiagonalAmatrix on
the left-hand side of the equation generates 4 planes (2 in each direction) of overlap data from the local solution. The
global solution requires all overlap data, so Miranda uses MPI Allgather to collect overlap data among processes.
Each process then computes the global overlap solution independently (for load balancing) and completes the exact
global solution. The global overlap problem requires the solution of a 4 × 4 block-tridiagonal linear matrix problem
with a dimension equal to the number of processes on the communicator (and hence is not strictly scalable). If the
direction is globally periodic, the global overlap solution involves a periodic block-tridiagonal matrix.

Due to the extensive use of FFTs and the connected all-to-all message patterns, Miranda is very communication sen-
sitive. To avoid bottlenecks and to achieve good load balancing, Miranda has been optimized for machines with mesh
networks, such as BG/L’s torus interconnect. It relies on MPI’s Cartesian communicators and maps these communica-
tors directly onto the torus to reduce message time, primarily in MPI Alltoallv calls on subcommunicators. We have
replaced all code that operates in a master-slave manner with fully parallel routines, reduced memory overhead, and
used an FFTW library tuned for BG/L.
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Figure 3: Snapshot of a 2D Molecular Dynamics Kelvin-Helmholtz computation after 2ns (all copper = red/bottom,
all aluminiu = blue/top)

2D-128 3D-4K 3D-16K
Number of CPUs 128 4096 16384

CPU configuration X × Y × Z 16 x 1 x 8 16 x 32 x 8 32 x 32 x 16
Total working set X × Y × Z 5120 x 1 x 2560 800 x 1600 x 400 1600 x 1600 x 800

Number of time steps 10 10 10

Table 1: Specification of test problems used in all experiments.

3 EXPERIMENTAL SETUP

We study Miranda’s performance on a BG/L system at Lawrence Livermore National Laboratory (LLNL) and on
a BG/P system installed at Argonne National Laboratory (ANL). BG/L uses a dual core version of the embedded
PowerPC 440 running at 700 MHz as its basic compute node. It then groups those hierarchically into node cards,
midplanes, and racks. The total system size used in this study is 40 racks with 1024 compute nodes per rack. BG/L
relies on several independent networks, including a 3D torus for point-to-point messaging, a tree network for global
collective communication and a separate barrier network.

As a successor to BG/L, BG/P maintains many of its properties; in particular the system provides the same types of
networks. The most notable difference is the upgraded compute node, which now features a Quad-core processor built
on top of the PowerPC 450 architecture running at 850 MHz.

We also use Hera, a commodity cluster based on AMD Opteron nodes connected with double data rate Infiniband links
in order to further study the performance impact of multicore systems. The complete system has 864 nodes, each node
with four quad-core chips (16 cores), which results in 13,824 cores in the overall system.

For all of the following experiments we use a Molecular Dynamic Kelvin-Helmholtz (MDKH) computation. Figure 3
shows a sample result of a 2D setup after 2ns of simulated time. We use a 2D problem for small scale runs and two
different 3D setups for large scale runs; all scaling results are achieved with weak scaling. Table 1 gives a complete
overview of the problems sets used in this work.

All data is measured using the MPI profiling tool mpiP [5], which separately reports time spent inside the application
and time spent inside the MPI library.

4 PERFORMANCE RESULTS

Due to memory restrictions and the size of the binary (including debug symbols and the performance analysis tool) we
were not able to run in Virtual Node mode on either machine and we therefore restrict ourselves to the results on BG/P,
which allowed us to investigate the performance impact of its multicore setup by comparing runs in Dual (running
two MPI tasks per node) and SMP (running one MPI task per node) mode. Additionally, we ran one early scaling
experiment on BG/P with 16384 tasks. Table 2 shows the results for various processor configurations on BG/P.
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Blue Gene/P
Mode SMP Dual SMP

Problem 3D-4K 3D-4K 3D-16K
Processors 4096 4096 16384

Application time 4956.06s 4980.47s 6060.79s
MPI time 77.88s 89.60s 332.64

App/MPI ratio 1.57% 1.80 % 5.49%

Table 2: Execution on BG/P for 4096 and 16384 nodes on various processor conifgurations.
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Figure 4: Results of the 2D problem with 128 nodes using different node/multicore configurations (identified by the
tuple number of nodes : cores per node) running on Hera.

The results show that Miranda continues to scale well on BG/P systems, however, with slightly reduced efficiency
likely caused by the system’s smaller communication to computation ratio. Further, these results are very early and
the BG/P version has not yet been fully optimized. Looking at the results on 4096 tasks, we can see that Miranda’s
optimizations successfully ensure a low communication overhead of under 2%. Comparing the two modes, we see an
interesting trend: Miranda executes faster when using only one core on 4096 nodes (SMP mode) (idling the remaining
three cores per node) than with 2 tasks on each of the 2048 nodes (Dual mode). BG/P’s fast interconnection network
and Miranda’s localization optimizations make up for the possible disadvantage of having more off node traffic. Instead
increased overhead caused by on-node communication leads to this counterintuitive effect.

To study this effect further, we ran the smaller and more communication intensive 2D experiment on Hera using 128
MPI tasks split over 128, 64, 32, 16, or 8 nodes utilizing 1, 2, 4, 8, or 16 cores per node respectively. The results are
shown in Figure 4. On this machine and for smaller core counts per node (up to 8), performance improves, allowing the
efficient utilization of the machine’s performance. For 16 cores, however, we see a similar behavior as on BG/P when
running on more nodes with fewer cores is beneficial, which can again be attributed to the increased communication
overhead being outweighed by the on-chip communication overhead combined with the chip’s limited bandwidth to
memory and the network.

5 CONCLUSIONS

Efficient execution of scientific applications, such as the Miranda CFD code, faces increasing challenges on today’s
multi- and many-core architectures. To understand and to evaluate the impact of this architecture trend, we study
the performance of Miranda on multicore platforms from the Blue Gene line and a commodity cluster. Initial results
show good scaling, but also indicate a possible performance drop for even larger cores per chip configurations. In the
future we will extend this study with the goal to optimize the code’s multicore behavior and to model and to predict
performance on future system architectures.
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1. Introduction 

With the advent of the multi-core processor, and the use of non-traditional processors (GPGPU, FPGA, Cell) as 
accelerators on large HPC architectures, these architectures are becoming heterogeneous and much more complex 
than HPC architectures of the recent past. For example, Roadrunner[1], the worlds fastest supercomputer[2], is 
comprised of AMD Opteron dual-core processors, each attached with an IBM Cell processor[3].  Since the Cell 
processor is itself a multi-core processor, the system is a hybrid consisting of multi-cores connected to multi-cores.  
To complicate matters further yet, the Cell processor is a heterogeneous architecture itself, consisting of a single 
Power Processing Unit and eight Synergistic Processing Elements.  So the Roadrunner system is really a hybrid 
system consisting of homogeneous multi-cores connected to heterogeneous multi-cores.   

It is not uncommon for production quality codes to run at significantly less than 20% of theoretical peak (many 
dropping below 5%) on conventional HPC architectures. The causes of this poor performance are many and varied.  
A common cause is what is often referred to as the memory wall.  That is, modern architectures cannot move data 
from memory to the processors quickly enough to keep the processor busy.  Other causes include communications 
overhead, I/O costs, and load imbalance. The increasing complexity of modern architectures will only exacerbate 
these performance problems. For example, as we move towards higher degrees of multi-core, the memory wall 
problem only gets worse, making memory management in general, and cache utilization in particular, vital to 
achieving good performance.  

There is a need for tools and techniques to allow users and developers to improve the performance of new and 
existing codes to better make use of available resources. Since it is common for a single application to run on 
multiple architectures, we feel it is important for the available tools to work across platforms.  It is much more 
efficient for the developer to learn a tool once and be able to use that same tool across platforms. Still, all the tools in 
the world will prove useless without an understanding of the techniques needed to find and alleviate performance 
bottlenecks in large codes. These techniques allow for a systematic approach to performance analysis and 
optimization.   

2. Performance Analysis Techniques 

Performance analysis and optimization is a cyclic process. This process starts with characterizing the performance of 
the whole application.  This characterization is then used to search for load imbalance and/or performance 
bottlenecks.  If a load imbalance is detected, the further investigation is carried out in an attempt to find the cause of 
the load imbalance.  Static or dynamic load balancing techniques can be used to try to alleviate the problem.  Static 
techniques may include things as simple as reorganizing the communication pattern, as load imbalance is often 
caused by processes waiting for data when useful work can be done. 

The basic process then involves finding areas of the code that use the most processing time.  It makes no sense to try 
to optimize a routine that only accounts for 1% of the total execution time. Concentrating on areas of the code that 
use the most time, performance bottlenecks are found, using tools such as those discussed below, and the cause is 
determined using these or other tools. At this point, changes are made to try to alleviate the bottleneck, and further 
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performance analysis is performed to determine the affect of the changes, and to further identify performance 
bottlenecks. This process is repeated with further refinements each iteration. 

The performance analysis part of this process involves searching for potential performance bottlenecks.  There are 
many things that can degrade the performance of code.  For example, cache performance can have significant 
performance ramifications.  Since the time to access data from main memory can run two orders of magnitude 
slower than the time to access data from the cache, high cache miss rates can degrade an application's performance 
to a crawl. Similarly, events such as TLB misses, process stall cycles, branch mis-predictions, etc. can degrade the 
performance of an application. 

Along with measurable events, other factors can affect the performance of an application. Communication 
performance is often a major cause of performance degradation in parallel application.  A process that has useful 
work to do is wasting time if it is waiting for data from another process.  Similarly, poor communication patterns 
can lead to poor performance by implicit serialization of communication. Similar to communication performance, 
I/O performance can be critical to good parallel performance.    

3.  Performance Analysis Tools 

There is a vast array of cross platform performance analysis tools available to 
the developer.  Many of these tools are open source and come from the academic community. Others are 
commercial tools with varying levels of pricing. There are also some tools that offer just a few features, but do them 
very well, while other tools are monolithic, offering many different features. Often, the choice is personal 
preference. We present a set of tools that provides varying levels of functionality.  One thing each of these tools has 
in common is a high level of support. While we are comfortable recommending these tools, we recognize there are 
many equally appealing tools available. 

3.1 PAPI

"PAPI aims to provide the tool designer and application engineer with a consistent interface and methodology for 
use of the performance counter hardware found in most major microprocessors. PAPI enables software engineers to 
see, in near real time, the relation between software performance and processor events."[4] PAPI offers a standard 
interface to hardware counters. This grants access to valuable profile data including cache misses (at all levels of 
cache), TLB misses, process stall cycles, floating point instructions, branch instructions, and many more. 
Additionally, when paired with other tools, this information can be made available at many different levels, 
including whole program level, routine level, block level, or even instruction level.  

3.2 TAU

Tuning and Analysis Utilities (TAU)[5] is a comprehensive package of tools for performance engineering.  TAU 
provides the ability to generate profile data, trace data, or a combination of both.  TAU also provides profile analysis 
tools, both text and GUI based.  Further, TAU ships with JumpShot[6] as a tracefile visualization tool. TAU can be 
integrated with PAPI, allowing for access to hardware counter data, can be used to profile or trace MPI or OpenMP 
programs (or, even hybrid programs), supports hand or automatic instrumentation, supports multi-language 
programs, provides program, routine, loop, block, and instruction level profiling, and supports C, C++, Fortran, 
Python, and Java.   

3.3 Scalasca 

"SCALASCA is a performance analysis tool being developed with the goal of making the optimization of parallel 
applications on large-scale systems both more effective and more efficient".[7] While collecting performance data 
has become easy, analyzing massive amounts of performance data is much more difficult.  One of the primary goals 
of the Scalasca project is to automate this analysis step. Scalasca generates trace files for MPI, OpenMP, or hybrid 
programs. The analysis step is then performed in parallel, basically replaying the communication of the application, 
based on the trace file, searching for common performance bottlenecks, such as late senders or late receivers. Once 
this analysis has been complete, Scalasca provides a visualization tool to view the call-path profile of the execution. 
This view brings potential performance bottlenecks to the developer’s attention. 

4. Example Results 
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We have worked with a number of applications performing detailed performance analysis studies.  This work has 
led to some significant successes in optimizing production codes.  Working within the DoD HPCMP PET program, 
we have achieved speedups of 3.8X on the molecular dynamics code LAMMPS, 4X on the quantum chemistry 
package GAMESS, and 4.7X on the computational chemistry package NWChem.  
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Abstract: This paper describes TAU’s support for multi-language instrumentation for parallel

CFD applications. TAU is an integrated performance evaluation toolkit for application codes

written in Python, Fortran, C, and C++, and using MPI for targeting scalable high-performance

computing (HPC) platforms. However, applications are more often combining code modules

written in different languages, requiring performance measurement support that can span the

code ensemble.  This paper describes issues of instrumentation across multiple languages, of

integration of multi-module measurements, and of performance analysis in multi-language

applications.  We demonstrate our approach with TAU applied to the CFD application domain.

Keywords: Performance instrumentation, measurement, analysis, TAU, CFD.

1. INTRODUCTION

The ever increasing complexity of parallel systems coupled with advances in software development environments

for HPC systems has led to some challenging problems for performance evaluation tools.  For computational

scientists, programming these systems effectively is a challenging task and often involves using one or more

languages, both to apply the best language abstraction for the application module development and to better support

integration of application components. Understanding the performance of their parallel applications is equally

daunting and the problem does not get easier when multiple languages are applied.  To observe and comprehend the

performance of parallel applications that run on HPC systems, we need performance evaluation tools that can show

performance data for each language and runtime layer with respect to the semantic entities that are meaningful to the

scientist. We describe how TAU provides a performance instrumentation layer that can capture semantic entities

from multiple compiled and interpreted languages to enable developers to better relate performance to their

application behavior.

TAU capabilities are effectively applied to CFD applications where there is a growing trend towards composing

large-scale CFD simulations using Python as a driver, such as in the Helios project [1].  The key advantage for using

a Python-based substrate in developing large-scale multi-disciplinary codes is greater flexibility in composing the

simulations using an interpreted language, as well as runtime resolution of symbols using dynamic shared objects.  It

is no longer necessary to create a monolithic package that statically binds together pieces of software developed by

different groups.  Instead, the loose coupling offered by Python helps developers create a plug-and-play environment

using shared objects that resolves dependencies at runtime.  Not only does this reduce the complexity of application

development and compilation, the enhanced runtime configuration and execution flexibility makes it possible to

more rapidly experiment with application solutions.  This is also true with respect to application performance

evaluation and tuning.  We show how TAU’s multi-language instrumentation and measurement is effective using

the Python driver case study for CFD applications.

2. MULTI-LANGUAGE, MULTI-LEVEL INSTRUMENTATION

The TAU Performance System
® 

[2] provides users with robust, portable instrumentation, measurement, and analysis

capabilities for observing and evaluating the performance of multi-language CFD codes using Python, C, C++, and

Fortran languages. The insertion of hooks for measurement (i.e., instrumentation) for multi-language codes that use

an interpreted language (e.g., Python or Java) with traditional compiled languages requires special care. For

instance, computational kernels are typically loaded in Python using dynamic shared objects, or shared libraries that

provide an interface with Python.  Parallelism is achieved by distributing the computation over multiple processors

using a Python package that interfaces with MPI, such as pyMPI [3] or mpi4py [4].  Events (i.e., actions that take
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place in the program) must be exposed (through instrumentation) to the performance measurement facility in a

uniform manner independent of the language where the events are generated.  These event measurements must flow

into a common performance data repository maintained within each executing context.  Events triggered by the

Python interpreter, such as routine entry or exit, must seamlessly blend in with events generated by computational

kernels coded in Fortran and C.  These, in turn, must interface with MPI or other runtime layer events so a common

calling stack is maintained within the performance tool.

The mechanism for code instrumentation may differ significantly for each of these layers.  For instance, we measure

the performance of MPI libraries by intercepting the calls made by the application to the MPI library. A tool such as

TAU provides a wrapper interposition library that defines an MPI interface using weak bindings and a name-shifted

interface [2].  In contrast, the Python interpreter provides hooks for instrumentation that TAU uses to capture routine

transition events while interpreting the code at runtime, and the source code of the CFD application is typically

instrumented using compiler-based instrumentation or a source-to-source translator.  Instrumentation methods

involve setting some environment variables to identify the measurement options chosen, and substituting the

compiler used by the build system with a TAU compiler script (tau_f90.sh, tau_cxx.sh, and tau_cc.sh for Fortran,

C++, and C respectively).

While creating a shared object of the computational kernel or while linking in the pyMPI executable, TAU’s shared

object must be linked in.  When events from Python, pyMPI, C, C++, or Fortran invoke TAU’s measurement calls,

TAU’s dynamic shared object provides the necessary symbol resolution of the measurement substrate and a single

performance data repository is used. While source-based instrumentation embeds the name of the routine in the

instrumentation call as a parameter, compiler-based instrumentation requires dynamic mapping of the routine

identifier (typically the address) to its name using the GNU BFD package under Linux. Python based codes load and

unload packages that are implemented using shared objects. When these packages use compiler-based

instrumentation in TAU, the mapping of a symbol address to its name must be maintained by TAU at runtime. TAU

updates these address, name mappings as libraries are loaded and unloaded and de-mangles routine names as

necessary for C++ codes. The result is shown in Figure 1 that shows a profile from TAU showing events from

Fortran, C, and C++ languages and runtime systems such as MPI and pyMPI.

3. CONCLUSIONS

The complexity of CFD applications and high-end computers system on which they run demand a high level of

sophistication in parallel performance tools, both their robust capabilities and the methodological practices for their

effective use.  The paper highlights the support for instrumentation of multi-language CFD applications using TAU.
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Fig. 1: Multi-level instrumentation using TAU exposes events from Python, C++, C, Fortran and MPI.
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Abstract: This paper describes parallel performance considerations of Helios, a software 

package used for high-fidelity aero/structural dynamics analysis of rotary-wing vehicles.  

Helios consists of a suite of CFD and CSD software modules integrated through a high-level 

Python-based software integration framework.  This loosely-connected approach has the 

advantage that each module can be developed separately from one another, but as with any 

parallel code, a single poor-performing module can hinder the performance and scalability of 

the suite as a whole. We utilize the the TAU performance system
®

 to assess the performance of 

different modules, demonstrating ways to measure both single processor execution and and 

parallel scaling performance from the Python level, without adding trace calls or recompiling 

the underlying executables. Both the execution rate and parallel performance of routines within 

the code modules can be discerned.  

Keywords: Computational Fluid Dynamics, Python, Parallel Computing 

 

1. INTRODUCTION 

Helios is the software product for high-fidelity multi-disciplinary analysis of rotorcraft being developed by the HPC 

Institute for Advanced Rotorcraft Modeling and Simulation (HI-ARMS) [1,2].  Instead of the traditional model 

where different physics are coupled together within a single code, Helios links together separate physics modules - 

computational fluid dynamics (CFD), computational structural dynamics (CSD), moving body dynamics, and 

various interface routines - through a high-level Python-based integration framework. The integrated set of modules 

runs on large-scale parallel HPC systems. 

 

 
 

Fig. 1: Near-body/Off-body overset meshing paradigm used by Helios. 
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Rotary-wing CFD analysis requires accurate resolution of viscous boundary layer flow near the blades, but also 

resolution of the wake structure since tip vortices interacting with rotor blades have a profound impact on vibration, 

noise, and handling qualities. Unfortunately, no single CFD paradigm is optimal for these different domains.  

Unstructured solvers are useful for resolving complex geometries and capturing the viscous boundary layer, but they 

generally do a poor job with the wake because they are computationally expensive and limited to 2
nd

-Order 

accuracy, which causes the wake to dissipate quickly.  Cartesian solvers do a poor job in the viscous boundary layer 

but are good at capturing the wake because they can be readily extended to high-order, are very computationally 

efficient (up to 10X faster than unstructured in our tests), and are amenable to automated adaptive mesh refinement 

(AMR) strategies.  Hence, the approach taken in Helios is to apply an unstructured solver near the body surface and 

adaptive high-order solver throughout the rest of the domain (Fig. 1).  This leads to a highly-accurate prediction of 

both the loads and the wake in a fast and efficient manner. 

 

Two CFD modules are used in Helios.  Near the body surface, the Reynolds-averaged Navier-Stokes solver NSU3D 

[3] is applied.  The farfield wake is resolved using a high-order block structured adaptive Cartesian Euler solver 

SAMARC.  SAMARC couples the SAMRAI [4] package from Lawrence Livermore National Laboratory to manage 

adaptive grid generation, parallel load balancing, and inter-processor, with the high-order ARC3DC [5] Cartesian 

block solver from NASA Ames.  The PUNDIT [6] domain connectivity software manages chimera-style 

interpolation between the different grid systems.  Structural loads and six-degree-of-freedom information are 

supplied by the RCAS software [7].  Further details on the implementation and validation of Helios are in references 

[1,2].  Although this multi-code strategy offers the advantages of “plug-and-play” for different simulation scenarios, 

it makes parallel implementation and load balancing much more complex than with a traditional monolithic 

simulation code.    

2. PERFORMANCE EVALUATION 

The key advantage for using a Python-based substrate in developing large-scale multi-disciplinary codes is greater 

flexibility in composing the simulations using an interpreted language, as well as runtime resolution of symbols 

using dynamic shared objects. It is no longer necessary to create a monolithic package that statically binds together 

pieces of software developed by different groups. Instead, the loose coupling offered by Python helps developers 

create a plug-and-play environment using shared objects that resolves dependencies at runtime. To better understand 

the performance characteristics of such a framework, both profiling and tracing are relevant. While profiling shows 

summary statistics, tracing can reveal the temporal variation in application performance. 

 

TAU [8] provides users with robust instrumentation, measurement, and analysis capabilities for observing and 

evaluating the performance of HPC applications. Of particularly importance for a code structure like Helios, TAU 

supports automatic instrumentation at multiple levels; the Python runtime level, the MPI library level and in the 

different languages at the source code level. Source code is pre-processed by TAU and calls to the API (for starting 

and stopping timers) are automatically added at the entry and exit of each routine, and if desired outer loops, during 

the compilation process. The advantage of Python based instrumentation is that it requires no intervention on the 

part of the developer.  The same executables may be used as in the un-instrumented case, but run through an 

alternative instrumented version of pyMPI.  The advantage of the source-code instrumentation approach is that it 

gives more detailed information, but a special wrapped compiler script must be used at compile time.  

 

We used TAU to automatically instrument Helios at the Python, pyMPI, MPI, and source-code level. To improve its 

coverage, the instrumentation at the different code levels must be compatible, and performance data streams 

generated at each level must merge to form a unified performance data state within the address space of the 

executing application. 

 

2.1 Python-level Instrumentation 

A multi-processor Helios job is executed using a Python script run under pyMPI [9].  TAU has built a version of 

pyMPI which automatically tracks all calls into and out of Python and MPI routines.  Thus, generating a 

performance trace is simply a matter of executing the script with the TAU-enabled version of pyMPI.  Figure 2 

shows the performance traces for two CFD applications generated using this approach.  The first computes hover 

conditions about a quarter-scale V-22 rotor (experimental model referred to as TRAM) on 16 processors, using 

NSU3D for the near-body solver and SAMARC for the off-body. The second computes flow over a NACA 0015 on 
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32 processors and applied TURNS in the near-body and SAMARC in the off-body.  In both cases, grid adaptivity 

was applied in SAMARC to resolve tip vortices.  The profile plots are generated by TAU’s paraprof tool. 

 

 
 

Fig. 2: Trace analysis performed using TAU’s paraprof tools from Python-level instrumentation of Helios modules. 

CFD analysis was performed on ARL’s mjm system of a TRAM (quarter-scale V22) rotor in hover on 16 processors, 

and flow over a NACA 0015 wing on 32 processors. 

 

A lot of useful information can be derived from this simple Python-level instrumentation.  It is clear from the 

profiles what percentage of time is spent in each CFD module, and also the degree of imbalance in the computation.  

Considering this level of instrumentation requires no change to the application’s executables, this is a very effective 

way to report the performance of a Helios application with essentially no intervention to the codes themselves. 

 

2.2 Compile-time Instrumentation 

The Python-level instrumentation can provide some useful insight but it is limited to high-level calls.  In the cases 

shown above, between 85% to 90% of the time is spent in the solvers NSU3D, TURNS, and SAMARC.  It is 

desirable to dive deeper into these routines in order to investigate the performance in more detail, and for this we use 

compile-time instrumentation. A TAU-wrapped version of the compiler automatically wraps each function in C/C++ 

code, and each subroutine in F90 code.  The developer does not need to manually instrument the code but replaces 

the C/C++/Fortran compiler normally used to compile the application with a tau-wrapped version that automatically 

applies the instrumentation. This enables subroutine-level instrumentation of all modules compiled with this 

approach, facilitating a more detailed look at the routines that take the most time inside the module.   

 

TAU can be configured to record megaflop rates using wallclock time and hardware counters from the PAPI 

libraries [10].  The hardware counters include metrics such as floating point instructions, data cache misses, etc.  

The paraprof tool allows different recorded metrics to be compared to one another, which reveals other useful 

execution information besides just wallclock time. TAU also enables organization of the timers and hardware 

counters into “groups”.  This is useful for an application like Helios which uses different modules, in order to isolate 

statistics for a particular module. Figure 3 shows an example using the PAPI hardware counters and groups 

functionality in order to analyze performance. We tracked the number of floating point instructions, obtained from 

PAPI, along with the measured wallclock time to obtain statistics on the execution rate of each routine in the 

module. The four fastest routines in SAMARC run between 850-1500 Megaflops, the fifth to eighth fastest routines 

run 200-550 Megaflops, and the remainder run at 100 Megaflops or less.  The breakdown in NSU3D is a little more 
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evenly spread, with the ten fastest routines running 465-1200 Megaflops, with a relatively even reduction after that.   

This information is very useful for identifying sources of single processor inefficiencies.   

 

 
 

Fig. 3: The mean execution rates (Millions of floating point instructions per second – Megaflops) of the different 

routines in SAMARC and NSU3D.  

 

2.3 Scalability Analysis 

The aforementioned techniques can isolate where computational time is spent and the relative computational 

efficiency of dominant routines within the code.  Developers are also interested in the scalability of particular 

routines, and of course the code as a whole.  For this analysis, we use TAU’s tool perfexplorer [11].   

 

 

 
 

Fig. 4: Perfexplorer analysis of the SAMARC multi-processor data.  Scaling drops off in the transition from 128 to 

256 processors.  Analysis of scaling in individual routines reveals the cause to be poor scaling in MPI_Allreduce 

and processIncomingMessages.  
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The paraprof tool can load performance data from different cases. It supports various database backends such as 

Derby, a file system based database, postgreSQL, mySQL, Oracle, and DB2. The perfexplorer tool may then be 

used to analyze this data stored for multiple runs to assess performance characteristics across a range of cases.  For 

example, Fig. 4 shows the scaling performance of SAMARC up to 256 processors.  There is a clear dropoff after 

128 processors.  Analysis of the routines revealed that two, SAMRAI::processIncomingMessages and 

MPI_Allreduce, were showing particularly poor scaling which was reducing the overall performance of the code.  

Isolating performance issues in this way makes it much easier for the developer to isolate performance issues early 

in the development.  

4.  CONCLUSIONS 

We demonstrated the use of TAU tools to perform multi-level performance analysis of the Helios code. High-level 

instrumentation is applied at the Python layer and is automatic, requiring no modification of the underlying 

executables. Python-level instrumentation provides useful data on time spent in the modules, identifying load 

imbalances and communication costs, generally gives a high-level view of the parallel execution. In order to isolate 

particular routines within the module that are causing inefficiencies, lower-level compile-time instrumentation can 

be applied.  Although this requires recompilation, it provides a wealth of useful information on execution rates and 

scaling qualities of individual routines within the module, and is therefore useful for isolating performance issues 

within a large code.  We demonstrated how these tools were used to identify sources of inefficiency in Helios.   
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Abstract: Open|SpeedShop (O|SS) is a comprehensive, open source parallel performance analysis
tool set that provides most common performance analysis step in a single environment. It can
help application programmers to analyze, understand, and optimize the performance of their codes.
O|SS provides a wide range of performance experiments and covers both sampling and tracing
techniques and works on sequential, MPI, and multithreaded codes without requiring source code
modifications. The latter allows users an easy integration of O|SS into their application’s workflow
and runtime environment, which ensures a low learning curve and is essential for achieving a wide
spread adoption of any performance tool sets.
Keywords: Performance Analysis, Profiling, Tracing, Optimization

1 INTRODUCTION

Performance analysis and optimization is a critical step in the development process of any scientific application.
Efficient and easy-to-use tool support is essential to allow users to complete this task, yet current tools are often
targeted for the performance analysis expert, and therefore cumbersome to use or require changes to the compilation
or execution process. This makes these tools unattractive for application developers who often have limited time
allocated for performance optimizations.

To overcome these problems, we have designed Open|SpeedShop (O|SS), an open source multi platform Linux per-
formance tool. It directly targets application developers and computer scientists as the main users and provides easy
access to an application’s performance profile, while not precluding more sophisticated and detailed analysis found
in other tools. O|SS currently runs on Linux clusters with Intel or AMD processors with a wide variety of Linux
distributions. O|SS’s performance analysis functionality includes a set of specific ”experiments” that allow the user to
easily gather a variety of different performance statistics about an application. This includes Program Counter Sam-
pling, a light weight way to get an overview of application performance bottlenecks; Call Stack Sampling Analysis,
a technique to find hot call paths; Hardware Performance Counters, providing access to low level information such
as cache or TLB misses; MPI Profiling and Tracing, enabling users to detect MPI communication bottlenecks; I/O
Profiling and Tracing to study an application’s I/O characteristics; and Floating Point Exception Analysis to detect
floating point exceptions which can slow down applications.

O|SS gathers its performance data from unmodified binaries and includes both offline and online instrumentation and
data collection facilities. Once collected, it displays the data through a set of detailed reports that allow the user to
easily relate the performance information back to their application source code. This information is accessible through
a comprehensive GUI, from a command line interface, as well as from within Python scripts. Additionally, the tool
set includes a series of analysis techniques, including outlier detection, load balance analysis, and cross experiment
comparisons. In summary, O|SS’s functionality provides a comprehensive set of techniques that greatly aid in the
analysis and understanding of parallel application performance.
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2 THE CONCEPT OF EXPERIMENTS

The central concept in O|SS’s workflow is an Experiment. It defines what is being measured and/or analyzed. Users
select their experiment at the beginning of any performance analysis run depending on what kind of performance
bottleneck they would like to investigate. With that, they implicitly choose how the data will be extracted from the
application, in which form it will be stored, and what kind of views are available for its analysis.

By default, the tool set offers three sampling and three tracing experiments covering most common needs for perfor-
mance analysis. These are

• PC Sampling, which provides a statistical overview of where a code spends its time and hence offers a good
first overview of a code’s behavior;

• User Time, which adds stack trace information to the gathered samples and thereby adds context on how a code
reached observed bottlenecks;

• Hardware Counter, which enables users to measure information offered by the CPU’s performance counters
like cache or TLB misses;

• I/O tracing, which gathers a detailed trace of all POSIX I/O operations found in a code and the time they took;

• MPI tracing, which provides the same type of information, but for MPI calls executed during an applications
execution; and

• FPE tracing, which tracks floating point exceptions triggered by the FPU.

Except for the MPI tracing experiment, which naturally requires parallel execution in an MPI environment, all other
experiment can be used in either sequential or parallel (MPI or multithreaded) environment. In the latter case, O|SS
keeps track of which performance information was generated by which process or thread and then offers the data either
in an aggregated (global) view or on a per task/thread group basis.

In addition to the existing default experiments, O|SS allows the addition of new experiments through a plugin in-
frastructure. By specifying separate plugins for data collection, data preparation, and data presentation programmers
can add new tool functionality without having to reimplement the (often complex) surrounding infrastructure. This
includes components like instrumentation, data conversion, transport, and storage, and user interfaces. This capability
allows O|SS to be extensible and also meet specialized needs, e.g., for particular hardware platforms with special
needs or performance monitoring capabilities.

3 USER INTERFACES, ARCHITECTURE, AND WORKFLOW

O|SS offers three different user interface, which are shown in Figure 1: a graphical user interface with source code
browser and simple graphing and visualization panels; a specialized scripting language similar to ones used by de-
buggers like gdb; and a Python module that allows the invocation of O|SS from within Python scripts. All three user
interfaces are equivalent in their functionality and capabilities and can interact. Data gathered using one interface can
be read and analyzed by any other. Further, activities in one interface can be tracked and replayed in any other.

This full interoperability is made possible through O|SS’s architecture, which layers all user interfaces on top of a
single Command Line Interface and performance analysis framework. Underneath this framework, O|SS relies on
several open source infrastructures, like SQLite, QT, and Python, as well as two different data collection architectures:
one that collects data offline into temporary files and postprocesses them for analysis in O|SS; and one that collects
all data online through a scalable communication network. The former is generally more lightweight and easier to
handle, while the latter offers the ability to monitor an applications progress and to attach to applications at runtime.
Which collection mechanism to use, hence depends on the targeted performance analysis scenario.

Independent of this choice, however, users generally follow the workflow depicted in Figure 2: they first select their
target application, the experiment, as well as the data collection mechanism. O|SS then loads the application or attaches
to it, instruments it with the necessary performance probes, and runs the application. Depending on the collection
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Experiment Commands
expAttach
expCreate
expDetach
expGo
expView

List Commands
listExp
listHosts
listStatus

Session Commands
setBreak
openGui

import openss

my_filename=openss.FileList("myprog.a.out")
my_exptype=openss.ExpTypeList("pcsamp")
my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list=openss.MetricList("exclusive")
my_viewtype=openss.ViewTypeList("pcsamp“)
result=openss.expView(my_id,my_viewtype,my_metric_list)

Figure 1: Open|SpeedShop provides three interoperable user interfaces.

Figure 2: Typical Workflow in O|SS.
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tasks nodes pcsamp hwc io iot
64 8 0.3% 0.2% 0.0% 1.5%
128 16 0.3% 0.3% 0.0% 0.0%
256 32 0.4% 0.4% 0.0% 0.3%
512 64 0.5% 0.6% 0.1% 2.4%
1024 128 0.4% 0.4% - -

Table 1: Overheads when executing O|SS on SMG2000 using a variety of experiments.

mechanism, the performance data is either stored in temporary files and converted after the run’s completion, or is
directly stored in an SQL database. Once the application terminates or the user polls for intermediate data in the
online mode, O|SS reads the collected data from the displays it to the user or performs additional analysis on it. The
latter includes cross experiment comparisons, multi rank analysis, or clustering techniques. In any case, the user can
use this to gather information about his/her application and then apply this information to either initiate a next set of
experiments or to modify the code.

4 SCALABILITY AND OVERHEAD

Performance tools need to be designed to exhibit minimal overhead, in order to not perturb the execution of the
application to a point that it significantly alters the application’s characteristics. Otherwise, the results obtained from
the tool do not reflect the real performance of the application and hence can lead to wrong conclusions.

To study the overhead caused by O|SS we apply it to a set of runs with SMG2000, a Semicoarsening Multigrid Solver
based on the hypre library [1], taken from the ASCI Purple benchmark suite [2]. We use an input size N = 903 for
all experiments and we execute them on Hyperion [3], a 1152 node Linux cluster. Each node is equipped with dual
socket Intel Xeon Quad-core processors and 8GB of main memory, interconnected with Quad data rate Infiniband.

We investigate the performance of both sampling and tracing experiments and Figure 1 shows the results of four
different experiments comparing the execution of the code with O|SS to a baseline without instrumentation. Sampling
experiments are expected to produce a uniform overhead across the whole application. For O|SS we see an only
negligible overhead of 0.3%-0.6% for the PCsampling and the hardware counter (hwc) experiments. Further, our tool
framework scales well showing only a slight increase in overhead when scaling the application run from 64 to 1024
tasks.

The performance of tracing experiments, on the other hand, depends heavily on the activity within the application that
is being traced. Typically, tracing experiments capture large amounts of data and are expected to create significant
overhead. The results in Figure 1 show the performance of the I/O tracer with and without stack tracer enabled.
SMG2000 does only minimal I/O and hence the numbers reflect the overhead required by O|SS to setup the experiment
and prepare the trace information, but not the actual recording of trace data. Again, we see a very low overhead and a
good scalability in all cases, but using stacktraces can in some cases created a slightly higher overhead of 2.5%.

5 CONCLUSIONS

O|SS is an open-source performance analysis tool set for Linux clusters. It provides a range of experiments for
sampling and tracing of performance data for sequential, MPI parallel, and multithreaded codes. Users can access
the tool through three separate, yet fully interoperable interfaces. O|SS can be applied to existing binaries without
requiring any changes to source code or recompilation and can hence be applied easily to any application. Using
a case study of a multigrid solver, we have shown that the overheads caused by the tool are negligible and that the
framework supporting O|SS is scalable. Future works includes porting O|SS to new platforms, including machines
like BG/L, BG/P, and Cray’s XT line, as well as further scalability enhancements. This will develop O|SS into true
cross-platform performance analysis tool set that can be applied by end users at any step of their code development
efforts, be it on commodity clusters, small test configurations, or production environments on high-end systems.



99

21st International Conference on Parallel Computational Fluid Dynamics

ACKNOWLEDGMENTS

Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. (LLNL-ABS-412292)

REFERENCES

[1] R. Falgout and U. Yang. hypre: a Library of High Performance Preconditioners. In Proceedings of the Interna-
tional Conference on Computational Science (ICCS), Part III, LNCS vol. 2331, pages 632–641, Apr. 2002.

[2] Lawrence Livermore National Laboratory. The ASCI purple benchmark codes.
http://www.llnl.gov/asci/purple/benchmarks/limited/code list.html, Oct. 2002.

[3] Lawrence Livermore National Laboratory. Lawrence Livermore teams with computing indus-
try leaders to develop an advanced technology cluster testbed. Press Release, available at
https://publicaffairs.llnl.gov/news/news releases/2008/NR-08-11-04.html, Nov. 2008.



100

21st International Conference on Parallel Computational Fluid Dynamics



101

21st International Conference on Parallel Computational Fluid Dynamics

eNabliNg COmPuTaTiONally baSeD aCquiSiTiON       
eNgiNeeriNg OF aerONauTiCal DeFeNSe SySTemS



102

21st International Conference on Parallel Computational Fluid Dynamics
 

 

 

Computationally Based Engineering for Air Vehicle Acquisition:  

The CREATE-AV Project 
 

Robert L. Meakin * 

* DoD High Performance Computing Modernization Program, Lorton, VA 22079, USA 

(Robert.Meakin@hpcmo.hpc.mil) 

Abstract: The CREATE-AV (Air Vehicles) Project is one of three primary elements of the 

CREATE Program, established in FY2008 by the Department of Defense (DoD) Director of 

Defense Research and Engineering to improve engineering processes for acquisition of major 

new military weapon systems.  The CREATE-AV Project will develop and deploy a set of 

Computationally Based Engineering (CBE) software tools for the air vehicles acquisition 

engineering workforce.   

 

Keywords: Software Engineering, Agile, HPC, Verification and Validation 

 

1. INTRODUCTION 

The CREATE-AV software is being developed in response to regularly updated and prioritized requirements to 

address key capability gaps in acquisition processes of this community.  The software aims to (a) increase the 

capacity of acquisition program engineers, (b) reduce workloads through streamlined and more efficient acquisition 

engineering workflows, and (c) minimize the need for rework due to early detection of air vehicle design faults and 

performance anomalies.   

The DoD Air Vehicles acquisition capability gaps identified to date by the CREATE-AV Planning Team can be 

categorized into three broad classes:  Conceptual Design, Design Verification, and Design Environment.  Each of 

these represent broad topic areas and demand resources beyond that available through CREATE to fully address.  

Still, the focused strategic goals of the CREATE-AV project are expected to provide significant, measurable, and 

necessary benefits to the acquisition engineering workforce and stakeholder organizations.  Each of the specific 

CBE software elements of the CREATE-AV Project addresses these gap classes in an important way. 

2. CONCEPTUAL DESIGN CLASS 

The Conceptual Design Class capability gap addresses the lack of robust methodologies and toolsets to support 

concept development and early systems engineering required in the formulation, evaluation, and documentation of 

concepts and products to support stakeholder requirements.  A critical component of the Conceptual Design Class is 

the creation of standard processes to gather, vet, and refine stakeholder requirements.  This includes methods and 

data repositories for documenting stakeholders needs, shortfalls, gaps, and lessons-learned.  In addition mechanisms 

to perform requirements analysis and functional analysis to identify and quantify measures of effectiveness and 

performance are needed.  These metrics are a necessary precursor to Conceptual Design, Exploration, and 

Refinement.   

Conceptual Design, Exploration, and Refinement is the iterative process of increasing fidelity to define potential  

solutions with achievable performance to satisfy the customer needs within funding and schedule constraints.  This 

process includes defining the design trade space, generating and maturing concepts, assessing technology readiness, 

and documenting the concepts.  The trade space is defined using knowledge from the functional analysis and 

allocation activities to bound acceptable functional performance and balance stakeholder needs and project 

constraints.  Alternative concept generation (including advanced technology concept generation) involves 

determination of the concepts’ performance, cost, risk, and employment strategies based on use cases in relevant 

threat scenarios, creating mission profiles, and generating and executing physics-based engineering models for each 

concept.  Using decision analysis, initial concept screening and potential solution set reduction is performed on the 

alternative concepts to assess the feasibility of each concept to meet the performance expectations in the use cases.  

At this point, the remaining candidate concepts are reassessed to ensure that a gap has not appeared in the trade 
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space; if so, a new concept is introduced to cover the gap.  This refined set of remaining concepts is further refined 

based on higher fidelity engineering analyses, design synthesis, trade studies, effectiveness analyses, and integrated 

risk analysis procedures to assess performance, effectiveness, risk, cost, and schedule.  Quantitative Technology 

Assessments (QTAs) determine the criticality of the applied technologies and their maturity through identification of 

the Critical Technology Elements (CTEs).  Early assessments of the CTE maturity feeds into programmatic risk 

control, budgeting for risk reduction, developing the Technology Development Strategy (TDS), and ultimately, 

Technology Readiness Assessments (TRAs).   

Current early-phase acquisition and early system engineering processes are limited in a number of significant ways.  

Synthesis tools (i.e., tools that estimate the performance of vehicle design concepts based on historical data for 

similar vehicles) are widely used in both government and industry.  Historical data has been shown to be insufficient 

for evaluation of new, complex, and innovative technologies.  The performance of past designs does not address 

many sources of design uncertainty.  Another early-phase limitation is a continued difficulty in estimating vehicle 

weight and weight distributions of aerospace designs.  Key system designs (e.g., airframe structure, engine deck, 

propulsion systems, etc.) depend on and contribute to vehicle weight.  Historical data is not sufficient and first-

principal tool sets do not exist.  This limitation exists for both government and industry conceptual design groups.  

Early-phase acquisition is additionally limited by a lack of ability to account for physics coupling (viz., structures, 

aerodynamics, aero-elastics, thermodynamics and heat transfer, stability, controls, and acoustics) at a level of 

fidelity necessary to accurately predict responses of vehicle concepts.  An ability to synthesize, evaluate, optimize, 

and assess uncertainty and risk of design concepts during early phase acquisition is critical to ensuring success 

during the subsequent technology development phase. 

3. DESIGN VERIFICATION CLASS 

Means for integrated, full-vehicle, full-physics, test and analysis of aircraft designs via simulation methods are 

needed for the services to verify vehicle performance; perform flight certifications and qualifications; rehearse 

ground-based and full-scale flight tests; and evaluate planned or potential operational use scenarios all prior to 

fabrication of test articles, full-scale prototypes, or implementation of aircraft modifications.  Such analysis 

capability is essential for design risk reduction and escaping the traditional design-test-fix paradigm of acquisition.  

As in conceptual design, existing tool sets that might be used in this role are hindered by a significant lack of 

physics coupling (viz., structures, aerodynamics, aero-elastics, thermodynamics and heat transfer, stability, controls, 

and acoustics).  High-fidelity tools do exist for most, if not all of the component physics, but they generally address 

a single physics or design issue.  In some cases, existing tools employ mixed-fidelity physics, accurately predicting a 

principal physics issue, while accounting for the integration of other physics issues with only rudimentary or lower-

order models.  The domains of appropriate use for existing high-fidelity simulation methods are generally limited to 

single-physics applications (e.g., aerodynamics only, or structural dynamics only).  Full-vehicle design verification 

requires multi-physics coupling. 

4. DESIGN ENVIRONMENT CLASS 

An environment that facilitates the application of CBE compute resources throughout the spectrum of acquisition 

engineering processes is needed.  Although it is true that aircraft manufacturers do use CBE in conceptual design 

and subsequent engineering processes, the relevancy of CBE to existing government acquisition processes is limited 

to late-phase processes only.  Existing environments for aircraft manufacturers also limits, in many respects, the 

potential of CBE to impact industry design, test, and evaluation processes.  Both government and industry processes 

are limited by computational power that is available to maximize the value of emerging software tools.  Paradigms 

to provide the acquisition community access to necessary CBE compute resources either do not exist, or have not 

been demonstrated.  Infrastructure tool sets necessary for transitioning design data between phases of acquisition or 

between design states generally do not exist.  When they do exist, they usually require inordinate degrees of user 

expertise, human resources, and calendar time.  Problem setup tasks and a lack of robust case management software 

represents very serious impediments to the effective use of CBE in acquisition. 
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5. CONCLUSIONS 

The CREATE-AV Project will develop and deploy four CBE software toolsets to the defense acquisition 

engineering community for air vehicles.  These are DaVinci, Kestrel, Helios, and Airframe-Propulsion Integration.  

An element of the project known as “Shadow-Ops” has been created to establish lines of communication between 

project development teams and targeted organizations within the defense acquisition engineering community, and to 

provide important quality controls for project CBE software products.  Each of these important project elements is 

briefly summarized in subsequent papers. 
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1. INTRODUCTION 

The DaVinci Product 

DaVinci is a CREATE-AV CBE software product defined in direct response to the Conceptual Design class of gaps.  

In January of 2009, the Air Force Materiel Command, Aeronautical Systems Center, Capabilities Integration 

Directorate (ASC/XRE) at Wright-Patterson Air Force Base in Dayton, Ohio was chosen to host the DaVinci 

development team.  The balance of FY2009 will be used for detailed product planning and initiation of the necessary 

team-build.  DaVinci product planning is a collaborative effort between the Army, Navy, and Air Force 

organizations having responsibility for defense conceptual design processes. 

The DaVinci product will consist of an architecture and framework that provides an open collaborative environment 

for early air vehicle systems engineering.  The intent is to provide unified life-cycle, engineering model-centric, data 

persistence and encompass functional analysis and allocation, alternative concept generation, trade-space 

exploration, and acquisition planning.  The DaVinci framework will be populated with a set of software support 

elements.  These will include, for example, engineering tools that enable PERCS analysis (Performance, 

Effectiveness, Risk, Cost, and Schedule) and requirements and technology impact trade studies.  In addition, 

DaVinci will include a key software element that allows the conceptual designer to quickly and intuitively build 

parameterized, associative, attributed models (including outer mold lines, OML, and corresponding layout of 

internal structure and sub-systems) necessary to feed higher-fidelity analysis tools (e.g., CREATE-AV Products 

Kestrel and Helios).  This represents a key enabling technology – an ability to quickly generate model descriptions 

suitable for aerodynamic and structural meshing.  This capability will facilitate the relevance of Computationally 

Based Engineering and High Performance Computing to the earliest phases of acquisition, providing decision 

makers with consistent-fidelity, multi-physics based decision data, including uncertainty analysis, in a timely way.  

The DaVinci product also represents an important mechanism for communicating model descriptions between 

phases of acquisition, currently a significant part of the Design Environment class of capability gaps described 

earlier.  
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Abstract: This paper documents a new integrating product that allows cross-over between 
simulation of aerodynamics, dynamic stability and control, structures, propulsion, and store 
separation.  The Kestrel software product is an integrating product written in modular form 
with a Python infrastructure to allow growth to additional capabilities as needed. 
Computational efficiency will also be improved by targeting the next generation peta-flop 
architectures envisioned for the 2010+ time frame. Kestrel is also targeted to the need of 
simulating multi-disciplinary physics such as fluid-structure interactions, inclusion of 
propulsion effects, moving control surfaces, and coupled flight control systems.  The Kestrel
software product is to address these needs for fixed-wing aircraft in flight regimes ranging 
from subsonic through supersonic flight, including maneuvers, multi-aircraft configurations, 
and operational conditions. Preliminary results of the F-16C and the F-22 with comparison to 
experiments are provided. Parallel scalability analysis of Kestrel is also included. 
Keywords: Aircraft Aerodynamics, Maneuvering Aircraft, Aeroelasticity, Control. 

 

1. INTRODUCTION 

Department of Defense High Performance Computing Modernization Program (DoD HPCMP) submitted a POM08 
initiative to improve DoD acquisition program timeline, cost, and performance through the use of Computational 
Science and Engineering (CSE) tools for ships, aircraft, and antenna design and analysis. The resulting program is 
called the Computational Research and Engineering Acquisition Tools and Environments (CREATE) Programi and 
is managed by Dr Douglass Post of the DoD HPCMP with oversight by the Deputy Undersecretary of Defense, 
Science and Technology, Dr Andre Von Tillborg. The CREATE Program is a $360M 12 year program executed by 
a tri-service team under the direction of Dr Post. The air vehicle portion of CREATE is referred to as CREATE-AV 
and is headed by Dr Robert Meakin of the DoD HPCMP.  

Although funding did not begin until October 2007, CREATE-AV planning began in earnest during the summer of 
2007. One of the first elements of CREATE-AV to be put in place was a requirements gathering process that would 
result in software products with a realistic expectancy of impacting the aircraft acquisition process from conceptual 
design through sustainment.  

Following the requirements gather process, the CREATE-AV team determined there were four key software 
products needed by the acquisition engineering workforce that fit within the available budget and accomplishable in 
the CREATE Program timeline. The four software products are Helios, a virtual helicopter simulation tool, Kestrel,
a virtual fixed wing aircraft simulation tool, an airframe-propulsion integration simulation tool, and a conceptual 
design tool. The Helios and Kestrel teams are due to release initial versions of their software products in FY09. The 

1 Senior Research Engineer, 201 West Eglin Blvd, Suite 115. 
2 Research Engineer, University of Alabama Birmingham. 
3 Computer Engineer, 201 West Eglin Blvd, Suite 115. 
4 Software Development Engineer, 201 West Eglin Blvd, Suite 115. 
5 Computer Engineer, 201 West Eglin Blvd, Suite 115. 
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airframe-propulsion integration and conceptual design software development teams are currently in the process of 
forming their teams and developing their software product definition.  

The Kestrel software product is a modularized multidisciplinary fixed wing virtual aircraft simulation tool 
incorporating aerodynamics, structural dynamics, kinematics, and kinetics. The first version of Kestrel is targeted to 
subsonic, transonic, and supersonic flight conditions with three major capabilities of a single static grid simulation, a 
single grid rigid body motion simulation, and a deforming single grid aeroelastic simulation.   

There are several over-arching design philosophies being applied to CREATE software products. The first is 
scalability on next generation machine architectures with linear scalability targets for Kestrel on the order of 104.
Another CREATE design philosophy is a “legacy to native” software development approach with near term legacy 
software being rewritten or factored in to native software over the life of the program.  Another important CREATE 
software design philosophy is modularity. A common architecture in CREATE-AV is a Python based infrastructure 
and executive and either C or Fortran components. This allows a build-up approach to adding capability and multi-
disciplinary physics. It also allows a factored approach to the software, aiding in code maintenance and 
supportability. One of the most important CREATE design philosophies is to follow a professional software 
development process incorporating configuration management, automatic unit, integration, and system testing, and 
user support. To have the desired impact on the DoD acquisition processes, the software has to be maintainable 
through the life of the program. All CREATE-AV products will have strict version control and configuration 
management through a Subversion (SVN) repository and continuous integration through nightly unit, integration, 
and system testing of current versions. User support will have both internet issue tracking and multi-layer live 
customer support. The following sections present the design and implementation schedule of the Kestrel fixed wing 
virtual aircraft product.   

2. KESTREL SOFTWARE ARCHITECTURE 

The Kestrel architecture is a blend of the CREATE design philosophies discussed above. It is a modular approach 
factoring traditional monolithic solvers into the Kestrel Infrastructure and Executive (KIE) piece, components to 
perform fluid dynamic, structures, kinematics and kinetics and other analysis, and the Kestrel User Interface (KUI).  
Figure 1 depicts a notional view of the Kestrel software architecture.  The infrastructure and executive is an event-
driven Python infrastructure that is component unaware. The components themselves can produce or respond to 
events and subscribe to or publish data. This allows the infrastructure and executive to be coded once and the 
eXtensible Markup Language (XML) input file to specify the use case and contributing components. The inputs to 
KIE are read in from an XML file generated by the KUI. Efficient data handling by KIE is accomplished by passing 
pointers to “heavy-weight” data or scalars. The resulting overhead was measured at less than 1% compared to a 
monolithic solver.   

In Figure 1 there are two dashed boxes surrounding the components. The left-hand box denotes those components 
that are shared objects with the KIE and maintained by the Kestrel development team. The right-hand box represents 
executables from outside sources that will exchange data via an executable-to-executable communication path. This 
feature will be implemented in later versions of Kestrel and is intended to allow industry or commodity software to 
work with Kestrel without significant rewrites of their software. An example use of this feature is to allow a 
commodity CFD solver to be used with all of the other components in Kestrel. Another example use would be to 
incorporate a “blackbox” autopilot from another contractor into the simulation.   
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Figure 1: Kestrel Architectural Design. 
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3.  CAPABILITY RELEASE SCHEDULE 

The development schedule of Kestrel is broken up into spirals and phases under each spiral. The two spirals planned 
concentrate on capability and then performance. In spiral one, there are four releases of Kestrel corresponding to 
four phases that incrementally grow the capability. In spiral two, parallel performance on next generation machine 
architectures and conversion of legacy code to native code is planned. However, it should be noted that code 
conversion and performance improvements will occur through all versions.  Below is a bulleted list of capabilities. 

Spiral One Phase One Capability – Kestrel v1.0 currently in beta test

• Static Rigid Body Aircraft
• Single Grid 
• Steady, Unsteady Flow 
• Inviscid, Viscous, Laminar, or Turbulent Flow 

• Dynamic Rigid Body Aircraft
• Single Grid 
• Rigid Body Motion 
• Arbitrary Motion file built externally 
• Pitch, Yaw, Roll, Sinusoid or constant rate and hold in KUI 

•  body axis and stability axis  
• Flexible Aircraft

• Static Position Single Grid Aeroelastic  
• 2nd Order Temporal Coupling 
• Structural Modal Solver 

•  Structural modal solver and mode shape forced motion 
• Automated fluid-structure interface couplings and interpolations  
• Algebraic Mesh Deform with 3-4 method choices (Surface Influence, Delaunay, Hybrid ) 

Spiral One Phase Two – Kestrel v2.0

• Static Rigid Body Aircraft & Captive Store
• Single Grid Control Surface Move, Multiple Grids  

• Dynamic Rigid Body Aircraft & Captive Store
• Single Grid with 6DOF Motion  

• Static Rigid Body Aircraft & Dynamic Store
• Multiple Grids with Prescribed/6DoF Store Motion  

• Flexible Aircraft
• Flexible Aircraft and Captive Store Motion 

Spiral One Phase Three – Kestrel v3.0 

• Dynamic Rigid Body Aircraft & Captive Store
• Single Grid with FCS, 6DOF Store Motion 
• Single Grid with Dynamic Propulsion, FCS, 6DOF, and Trim  

• Static Rigid Body Aircraft & Dynamic Store
• Multiple Grids with 6DOF Store Motion 
• Multiple Grids with 6DOF Store Control Surfaces  

Spiral One Phase Four – Kestrel v4.0

• Dynamic Rigid Body Aircraft & Captive Store
• Multiple Grids with Dynamic Propulsion, Flight Control System, 6DOF, and Trim  

• Dynamic Rigid Body Aircraft & Dynamic Store
• Multiple Grids Prescribed Aircraft Motion, and 6DOF Stores 
• Multiple Grids, 6DOF Aircraft Motion, and 6DOF Stores  

• Flexible Aircraft
• Dynamic Flexible Aircraft and Captive Stores 
• Dynamic Flexible Aircraft and Dynamic Stores 
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The current status of Kestrel is the following: a) Kestrel v1.0 is in beta testing with all three major capabilities 
working, b) Kestrel is compiled and running on four of the DoD HPCMP Defense Shared Resource Centers (DSRC) 
supercomputers--Hawk and Falcon at the AFRL DSRC, Jaws at the Maui High Performance Computing Center 
DSRC, and MJM at the Army Research Laboratory DSRC, and c) Kestrel v2.0 has passed the CCB and in design. 

4. PRELIMINARY RESULTS 

This section presents preliminary solutions computed with Kestrel with comparison to experiments and other solvers 
in Figures 2 a) and b). In addition to the comparisons, parallel scalability for Kestrel is included in Figures 3 a) and 
b).  

Figure 2 a) depicts the lift coefficient versus angle of attack for the F-16C in a clean configuration for Lockheed 
flight test data and Kestrel, Cobalt, and Beggar computational fluid dynamics data. Solutions are presented for a 
Mach number of 0.6, an altitude of 10,000 ft, and a range of angles of attack between 0 and 24 degrees. The Kestrel
solutions virtually lay on top of the flight test data and demonstrate an increased variation between the mean 
solution and maximum and minimum values of lift for increased alpha. Kestrel and Cobalt also both demonstrate a 
“knee in the curve” near 12 degrees alpha consistent with the flight test data. Figure 2 b) depicts the drag coefficient 
versus angle of attack for Kestrel, Cobalt, and Beggar. No flight test data was available for drag coefficient.  

Figure 3 a) and b) depict the parallel scalability performance of Kestrel for a 6 million cell mesh on various 
platforms. These results are for Kestrel with no performance tuning and represent a baseline for improvement in the 
future. The Kestrel parallel scalability as measured by efficiency is at 70% for this fairly small mesh on 1024 
processors. Efficiency in this case is defined by comparing to the linear parallel scalability for an increase in 
processor count. Achieving the Kestrel target of 90% efficiency on 1024 processors for a 20 million cell mesh has a 
high likelihood of success due to the baseline scalability observed on a 6 million cell mesh.  

a) b)

Figure 2: F-16C at a Mach number of 0.6 and an altitude of 10,000ft: a) lift coefficient versus angle of attack 
comparison of Kestrel with flight test data from Lockheed and two other solvers (Cobalt and Beggar), b) drag 

coefficient versus angle of attack comparison of Kestrel with two other solvers (Cobalt and Beggar).  
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Figure 3: Kestrel Parallel Speedup for a 6 million cell mesh on three different DoD parallel computers. 

4. CONCLUSIONS 

In conclusion, significant progress has been made since the inception of the CREATE Program on 1 October, 2007. 
In CREATE-AV, requirements have been gathered, refined, and prioritized, software capabilities to meet the 
requirements have been defined, four software products have been selected to meet user priorities and the available 
budget, and two of the four software product teams are near a release of their first version.  The Kestrel software 
product has been developed following the over-arching design philosophies of the CREATE Program and to meet 
the specific needs of the aircraft acquisition engineer and scientist communities. The Kestrel product has been 
developed from the ground up following sound software development practices and innovative solutions to the user 
requirements have resulted from the process.   An intensive validation and verification effort is currently underway 
to ensure Kestrel is suitable for production use by the acquisition community. 
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1. INTRODUCTION 

The Airframe-Propulsion Integration Product 

The A-PI software product is being architected as a module to be driven either by Kestrel or Helios to facilitate 

integrated evaluation airframe/engine-inlet/engine-fan compatibility and nozzle/after-body interactions, including 

nozzle transients, at any point in the design cycle.  In October of 2009 the Air Force Arnold Engineering 

Development Center was chosen to host the A-PI development team at their facility in Tullahoma, TN.  FY2009 is a 

detail planning and requirements gathering year with a preliminary low-order propulsion module scheduled for 

delivery to the Kestrel team. 

Motivation for a capability for airframe propulsion integration is driven by the fact that current design practice does 

not allow integrated testing of air vehicle concepts until very late-phase acquisition (i.e., fabrication of full-scale 

prototypes), creating design uncertainty and potential for acquisition costs due to late discovery of performance 

anomalies and associated re-design cycles.  For example, 

i. Spillage drag is currently determined in the wind tunnel by varying the mass flow through a model 

of the inlet design.  Effects of throttle transients are not included in wind tunnel simulations, so the 

current design methodology does not address unsteady flow effects on external surfaces of an 

aircraft that often occurs with rapid throttle transients.  The detrimental effects of the resulting 

unsteady flow are often not uncovered until full scale flight tests. 

ii. Current industry practice for integrating the inlet and engine is for the airframe and engine original 

equipment manufacturers (OEMs) to agree on a level of distortion to be provided by the inlet and 

accommodated by the engine.  The distortion level is determined in subscale wind tunnel tests.  

Distortion simulation screens are developed from the wind tunnel results and placed in front of the 

engine to determine if the patterns are acceptable in terms of performance and operability.  The 

inlet and engine are not evaluated together until they are both integrated into the airframe for flight 

tests. 

iii. Nozzle/after-body integration is currently performed in subscale wind tunnel tests using perfect 

gas jets to simulate the engine exhaust.  The results are then corrected using empirical 

relationships to account for real gas and temperature effects.  The first real coupling of the engine 

and airframe again occurs in flight tests.   Effects of nozzle transient effects on the external flow 

are also not simulated until flight tests. 

As noted earlier, the CREATE-AV Airframe-Propulsion Integration product is being architected as a module to be 

executed in both Kestrel and Helios.  The architecture assumes a mature state that includes high fidelity simulation 

of engine inlet through exhaust and all physics in between.  However, it is recognized that the scope and resources 

of the CREATE-AV project alone are insufficient for complete fulfillment of this end-state.  Accordingly, product 

development will approach this end-state by degrees, delivering capability to the targeted acquisition engineering 

workforce in response to prioritized requirements.  A progression of capability might include the following 

capabilities. 

i. Module that facilitates incorporation of 0-D and 1-D engine models into Kestrel and Helios. 

ii. Add capability to the module for Navier-Stokes simulation of engine inlet and rotating machinery, 

including aero-elastic effects of fan blades.  Add capability to directly represent nozzle geometry, 

including moving walls, and multi-species capability to the solver to correctly represent different 

gasses of exhaust jet.  Employ engineering model for all other components and processes of the 

engine. 
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iii. Add capability to the flow solver for accommodation of full non-equilibrium chemistry to account 

for the reactions associated with combustion.  Employ an engineering model of multi-phase 

aspects of the combustion process. 

iv. Add capability to the flow solver for accommodation of multi-phase flow associated with 

transition of jet-fuel droplets into gasses.  This capability is important in accurate prediction of 

combustor and afterburner performance.   

Progressions 1 and 2 above are the planned contributions of the CREATE-AV Project toward integration of engine 

and airframe into system analysis capability.  It is possible that the project could reach progression iii.  Given the 

complexity of the physics and current state-of-the-art for propulsion and combustion modeling, progression iv is 

clearly beyond the scope of CREATE. 



113

21st International Conference on Parallel Computational Fluid Dynamics
 

 

 

Computationally Based Engineering for Air Vehicle Acquisition:  

Rotary Wing Simulation 
 

Venkateswaran Sankaran * 

* US Army Research, Development, and Engineering Command, AFDD, Moffett Field, CA 94035, USA 

(vsankaran@merlin.arc.nasa.gov) 

1. INTRODUCTION 

The Helios Product 

The genesis of the Helios product name is a hybrid word derived from Helicopter Overset Solutions, or “HeliOS”.  

The OS acronym has since been dropped and the product simply goes by the name “Helios”.  Helios is actually the 

product of the HPC Institute for Advanced Rotorcraft Modeling and Simulation (HIARMS), sponsored by the DoD 

HPC Modernization Program Office and operated by the Army AMRDEC at Moffett Field, California.  The 

strategic goals of the HIARMS are closely aligned with those of the CREATE-AV Project.  This is true to such an 

extent that Helios developers are now full participants in CREATE-AV Project management and product 

development processes, though funding lines are separate.  Helios development began in FY2006 and will continue 

through the end of FY2011.  After this time, development will continue with the combined support of the Army host 

of the Helios development team and CREATE-AV Project to directly address CREATE priorities.  Helios and 

Kestrel are complementary software products.  Both directly address the Design Verification class of gaps described 

above.  Helios targets rotary-wing air vehicles, while Kestrel targets the fixed-wing complements.  The technologies 

represented in these products overlap, yet each have a number of unique aspects as well.  The CREATE-AV Project 

management exploits this reality to leverage both the expertise of the respective development teams and software 

components.  The relationship is highly beneficial to the project in many ways, but specifically in terms of software 

development practices relative to API definition, module interoperability, and long-term software maintenance. 

At maturity, Helios will facilitate full rotorcraft (all types, manned and unmanned) high-fidelity simulation, 

including direct simulation of relative motion between rotors and airframe, as well as engineering models of rotor 

systems; and stores/cargo carriage and release for realistic flight conditions (hover, forward flight, and transition and 

conversion, for vehicle concepts that employ such technology) and operational conditions such as refueling 

maneuvers or takeoff and land maneuvers in benign and harsh environments (e.g., pitching/heaving ship decks).  

Helios provides for the direct coupling of physics – rotor aero-elastic effects (flapping, lead/lag, and torsional), 

rotor/wake and airframe interactional dynamics, and propulsion effects (e.g., aerodynamics and inlet performance, 

exhaust re-ingestion during hover, exhaust plume dynamics, etc.).  Together, these software attributes allow for 

early assessment for rotorcraft designs (at preliminary design and final design) with corresponding opportunities for 

fault detection prior to fabrication of scale models or full-scale prototypes.  After production, the capabilities allow 

for ground-based and flight test rehearsals for test scoping, mission planning, and operational testing. 

The Helios product is a high-fidelity multi-disciplinary computational analysis platform for rotorcraft aeromechanics 

applications.  Rotorcraft flow fields are challenging because they are inherently multidisciplinary, requiring the 

solution of moving-body aerodynamics coupled with structural dynamics for rotor blade deformations and vehicle 

flight controls.  Moreover, the aerodynamics solution is difficult because of the need to resolve multiple spatial and 

temporal scales in the problem, particularly the accurate propagation of the rotor-blade tip vortices into the far-wake.  

Unlike their fixed-wing counterparts, rotorcraft fly in their own wake, demanding accurate prediction of these flow 

physics relatively long distances into the field.   Helios handles the aerodynamics solutions in an innovative manner 

using a dual-mesh paradigm: unstructured meshes in the near-body region and Cartesian meshes in the off-body 

region. The unstructured near-body meshes enable ease of mesh generation around complex bodies and 

configurations while, at the same time, preserving accuracy of the viscous scales in the boundary layers. The 

Cartesian off-body mesh solution, on the other hand, allow the use of efficient data structures, high-order accurate 

discretizations and ease of mesh adaptation, all of which are crucial for accurately resolving the tip vortices in the 

far-wake. Moreover, the near-body mesh rotates, moves and deforms with the rotor blades and vehicle, while the 

off-body meshes are usually stationary. Data transfer between the two mesh systems are performed through the use 

of overset domain connectivity transfer technology that dynamically cuts holes and fringes in the  meshes to 

accommodate the relative motion between the mesh systems.  
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Helios utilizes a Python-based infrastructure called the Software Integration Framework (SIF) to couple the modules 

responsible for the aerodynamics, structural dynamics, vehicle flight dynamics and six degree-of-freedom motions.  

The modules themselves are derived in most instances from legacy single-discipline computer codes and are written 

in variety of languages:  FORTRAN, C and C++.  The use of Python enables the wrapping of these codes into 

modules or components, the efficient transfer of data between them and their execution in a scalable parallel cluster 

environment.  Importantly, SIF provides a light and flexible infrastructure which accesses the components at a very 

high-level and requires little customization or rewriting of the underlying legacy (or new) codes.  Simultaneously, it 

also offers the potential for specifying a set of component interfaces that would allow the underlying codes or 

components to be re-engineered or even changed entirely without interfering with the other codes in the 

infrastructure.  

Presently, Helios is nearing the release of the first version of the software product, code-named Whitney. This first 

version provides capabilities for stand-alone fuselage aerodynamics, optionally combined with a momentum disk 

model, and isolated rotor analysis with and without aeroelastic and comprehensive analysis coupling effects. The 

software product is accompanied by a front-end graphical user-interface, which is based upon a common graphical 

engine developed by the Kestrel team. This user-interface allows for ease of preparing grids for Helios and for 

setting up run-time inputs. Like all CREATEAV products, Helios will undergo a beta-certification process by the 

CREATEAV ShadowOps team prior to actual beta release. Additional functionalities will be introduced in future 

releases following an approximately annual release cycle.  
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Parallel and Meshfree: new frontiers of CFD
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Abstract: For the best part of 50 years, advances in algorithms and the increasing computing
power have made computational fluid dynamics, CFD, a mature discipline. Which are some re-
maining frontiers of the discipline? It is common knowledge that one of the challenges in fluid
simulation continues to be the need to straddle many scales. New computational methods still
need to be developed that are able to adapt to the many scales of a problem. Another frontier
recently opened is the development of hardware-aware software. Multi-core computers are on
everyone’s desktops nowadays, and a growing trend in using graphics cards and other special-
ized hardware is buzzing. In all of these frontiers, there is great potential for meshfree methods.
Particle-type formulations for CFD offer an alternative which is low in numerical diffusion, de-
void of numerical dispersion and stability constraints. Also, meshfree methods offer a natural
adaptivity in situations where mesh generation is a huge burden (e.g. moving boundaries). Mesh-
free methods could be especially well-suited to exploit the new hardware technologies entering
the scene. I will present an overview of some aspects of meshfree simulation in fluid dynamics,
and recent progress in algorithms and parallel implementations, including novel hardware.

Keywords: meshfree, particle method, parallel computing, novel hardware

1 INTRODUCTION

In an often cited complaint of computational fluid dynamics practitioners, the generation of a good quality computa-
tional mesh is estimated to be maybe 80% of the cost of a simulation cycle. Perhaps this is today an exaggeration, as
the quote has been repeated for years without editing the estimate. Or perhaps not. As computing power has grown
exponentially, more and more complex problems are attempted by the community. Presently, many of the cutting-
edge results in fluids simulation involve highly irregular immersed shapes or fluid conduits (e.g., in biological fluid
dynamics applications), or moving boundaries. In these types of problems not only the generation but the subsequent
maintenance of a good mesh can be an onerous part of the job.

Before we begin discussing some recent research progress in the development and implementation of meshfree meth-
ods, maybe it is a good idea to agree on some basic terminology. What is a mesh? First, it is a means by which a
continuum problem is translated into a finite description—but of course meshfree method require this, too. Second, it
is a geometric representation of the object(s) that is(are) to be analyzed by the CFD program. Again, meshfree methods
need something like this also. What characterizes the mesh-based approach in particular is that the above are provided
by a set of nodes and the interconnectivity of these nodes, which has to be maintained. Meshfree approaches aim at
utilizing the set of nodes but doing away with the connectivity and its maintenance over time. The simplification that
this introduces in the geometric representation of objects and surfaces is substantial.

During the celebration of the 75th anniversary of the Graduate Aeronautical Laboratories in Caltech (November 2003),
I had the privilege of meeting Professor Milton Van Dyke1. When he asked me what I was working on, and I explained
about the efforts to simulate fluid flow without using a mesh, he replied: “It sounds like magic.” Today, a critical
mass of researchers are demonstrating that magic in a variety of applications, including both fluids simulation and
computational mechanics. The list of variations that have been under development is dizzying: from the oldest vortex
particle method [4] and smooth particle hydrodynamics method, SPH [11], to diffuse element method [16], element-free
Galerkin [3], reproducing kernel particle method, RKPM [15, 14], hp-clouds [9, 10], and a half-dozen more.

It would be too ambitious to try to give a real overview of meshfree methods on this occasion. Instead, I will concentrate
on three topics. First, how radial basis function (RBF) methods have been combined with the vortex particle method
to produce a fully meshfree system of direct numerical simulation. Second, the importance of clever algorithms to
provide efficiency and ensure that these methods are competitive with mainstream CFD schemes—I will focus on

1Author of the classic book “An Album of Fluid Motion”.
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the fast multipole method as a paradigm of O N methods with multi-resolution capability. Third, I will discuss
innovations for using new hardware to implement numerical algorithms. This last topic will bring up the possibility
that meshfree and particle methods can take better advantage of the massively parallel hardware, such as graphic card
accelerators.

2 FULLY MESHFREE VORTEX PARTICLE METHOD FOR FLUID SIMULATION

The vortex particle method is used to simulate incompressible fluid flow based on the vorticity formulation of the
Navier-Stokes equation. A particle-like approximation is used on the vorticity field ω ∇ u, as follows,

ω x, t ωσ x, t
N

i 1

γiζσ x xi t . (1)

Here, ζσ is the particle basis function, γi are the particle weights, and the scattered particles located at the points xi are
convected by the fluid velocity u to satisfy vorticity transport. In this Lagrangian formulation, there is an incremental
loss of spatial accuracy as the xi become disordered. This effect is not catastrophic, but it can quickly bring accuracy
down to unacceptable levels. The reason is that as the vortex particles follow the flow strain, they cluster together
in some areas and open gaps in other areas, and so they are unable to represent a continuous field. This, added to
the fact that convergence proofs for the vortex method relied on the assumption of particle overlap—h σ 1 for
h the average particle separation and σ their length scale—, meant that only short-time calculations were advised.
This situation changed when an interpolation scheme for particle weights was first introduced [13] in what is now
called ‘particle redistribution’ or ‘remeshing’. Particle remeshing allowed for the first time long simulations of high-
Reynolds number flow with the vortex method. However, it introduced back the mesh into the numerical system, and
with it numerical diffusion and issues related to accommodating irregular boundaries. Nevertheless, many excellent
results were produced using vortex methods with remeshing, such as [17, 6].

A fully meshfree alternative, in the sense that nodes can be scattered and no regularity requirement is introduced in
the formulation, was introduced in [2], where re-location of the particles is accomplished via radial basis function
interpolation. When a function f is only known at scattered points X x1, , xN , it can be approximated by a
linear superposition of radial basis functions (RBFs), φi φ x xi , as,

f x fφ x
N

i 1

αiφ x xi (2)

The parallel between (2) and (1) is obvious. The crux of the RBFmethod is finding the appropriate values of the weights,
αi, so that the representation (2) approximates well the function f . To find the weights, one uses the known values of
the function at the data locations, f xj with j 1 N , and solves a collocation problem:

f xj

N

i 1

αiφ xj xi or f Φijα (3)

Solving such a system can be computationally expensive—O N2 if using an iterative method, due to the matrix-vector
multiplications with a dense matrix—and is moreover complicated by the fact that the matrix Φij is ill-conditioned for
most choices of φ. Compact support basis functions have been developed to deal with these issues, but sacrifice
accuracy and convergence rate, in exchange for computational efficiency.

3 COMPUTATIONAL CHALLENGES

Solving the RBF collocation problem, as described above, involves a linear system with a fully-populated and ill-
conditioned matrix. Clearly this is a challenge when N is large. Another classic challenge for particle methods is the
calculation of pair-wise interactions, in the case of the vortex method, to obtain the velocity of the particles from the
vorticity. Using the Biot-Savart law of vorticity dynamics, the velocity of the particles is given by,

u xj

N

i 1

γiKσ xj xi (4)
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where the kernel Kσ is related to the particle basis function ζσ via the Biot-Savart integral. A common choice for the
particle basis function is a Gaussian:

ζσ x
1

2πσ2
exp

x 2

2σ2
, and Kσ x

1
2π x 2

x2, x1 1 exp
x 2

2σ2
. (5)

For this choice, the kernelKσ does not decay fast enough that it can be neglected in the far field, and thus the evaluation
of the velocity (4) requires O N2 operations. This was for quite some time an impediment to the adoption of the
particle method, as it was simply not competitive compared with mainstream CFD schemes.

Two types of methods have been developed to more efficiently compute the particle interactions. One relies on interpo-
lating the particle information onto a mesh and solving for the velocity field efficiently on the mesh, to then interpolate
the computed field back to the particle locations. This approach is known as the vortex-in-cell method [7, 5]. As in
the process of particle remeshing described in the previous section, the vortex-in-cell calculations introduce a mesh
into the numerical system. The second method for the efficient computation of the particle interactions relies on a
hierarchical decomposition of space, to identify what is ‘near’ and what is ‘far’ from an evaluation point, and applies
series expansions to represent clusters of particles in the far domain; it is essentially meshfree. The archetype of this
second type of method is the Fast Multipole Method, FMM [12].

The FMM algorithm can be rather complex to fully grasp, and difficult to program, which has been a barrier for adoption
and arguably diminished its impact. Moreover, parallelization can be quite tricky. To aid in a more widespread adoption
of the FMM, we have recently developed PetFMM2, a parallel fast multipole library implemented within the framework
of PETSc[1]. The current version consists of a complete implementation of the FMM in parallel, with the feature of
providing load balancing automatically via an optimization approach [8]. A prominent feature of this software is that it
is designed to be extensible—the goal is to effectively unify efforts involving several algorithms which are based on the
same principles of the FMM. This should be a significant contribution to the meshfree and particle methods community.

Going back now to the problem of solving the ill-conditioned RBF interpolation problem, we also have some significant
progress to report. In [18] we developed a domain decomposition approach with an added mean field, designed to take
advantage of the rapid decay of the Gaussian basis function. The algorithm was shown to have excellent algorithmic
efficiency, converging rapidly to machine precision, and an O N complexity and storage requirement. At this time,
the research code for this fast RBF method is available from Google Code3, but we are initiating the development of a
parallel version which will be shared in an open source framework similar to the PetFMM software.

4 HARDWARE ACCELERATION

A new wave in scientific computing has the community buzzing: the use of graphics processors for programmable
tasks, with the aim of exploiting their massively parallel architecture. The huge attention that GPUs are attracting stem
from the large computing capacity and the low cost of these devices. When GPUs are used as accelerators for CPUs,
the hardware configuration is often referred to as a hybrid system. The performance achieved from hybrid systems far
exceeds that of today’s best X86 processor. Therefore, the potential for order of magnitude speed-ups is enticing many
venturesome researchers to attempt implementation of their algorithms for such systems.

Not all problems are massively parallel, however. Indeed, many algorithms do not map well to the GPU architecture.
Often ‘porting’ a code from a serial version is inefficient and complicated. Rethinking algorithms might be required, so
that they are more suitable for the new architecture. Because the GPU has been developed for graphics computations,
the hardware itself is very different from a normal computer. Programming for the massively parallel GPU is difficult—
the number of parallel executions can easily be in the order of several thousand kernels (a kernel is a small function).
Imagine that programming in parallel for clusters of computers is already a challenge!

Our approach to the task of implementing problems for systems with GPU acceleration is to think about them as
‘heterogeneous computing’ applications. The philosophy of heterogeneous computing is reducing the overall execution
time by using different types of hardware available within the same system. Commonly, algorithms do not fit only a
single model (they can have some parts that require sequential execution, and others that are more suitable for parallel
execution), so identifying and exposing parallelism in an algorithm is the first step. Often, the sequential algorithm
will need to be re-thought. As a result, it is possible that a less ‘efficient’ but more parallel algorithm is produced.

2PetFMMstands for ‘portable extensible toolkit for FMM’, as in PETSc, which is ‘portable extensible toolkit for scientific computing’.
3The code is found at http://code.google.com/p/pyrbf/.
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Figure 1. The tasks in the DAG are:  Tree construction
 Particle clustering  Listing of cluster interactions  Par-
ticle to multipole calculations  Multipole to multipole trans-
lations  Multipole to local transformation  Local to local
translation Local to particle evaluation Near domain eval-
uation Adding near and far field contributions.

For example, in an N -body simulation, where all the par-
ticles in the system interact with each other, if the inter-
actions are symmetric—the interaction a, b is equal to
the interaction b, a —a sequential code can take advan-
tage of the symmetry to reduce the operations. In the GPU,
the serial optimization based on symmetry is actually more
complicated to implement and could also be slower than
computing all the interactions directly!

As mentioned above, the first step is exposing parallelism
in the algorithm. In the second step, we implement and dis-
tribute the code between the CPU and the GPU. Our goal is
to efficiently distribute the work, taking advantage of the
fact that CPU and GPU could also work in parallel. As an
example, consider the FMM algorithm. If we look at the
FMM from a sequential point of view we have four sequen-
tial stages: setup, upward sweep, downward sweep, and evaluation. But the algorithm can be further analyzed for more
parallelism. We use a Directed Acyclic Graph (DAG) representation of the algorithm to express the finer-parallelism
between tasks, as shown in Figure 1. This tool makes distributing the work evenly between the CPU and GPU a more
manageable task.

The approach to exploitation of novel hardware just described is currently being used to produce a GPU implementation
of the FMM algorithm; this is work in progress. But it also has revealed the following: due to the fact that particle
methods are characterized by a higher computational intensity, they have greater potential to take advantage of the
massively parallel hardware. In contrast, mainstream mesh-based CFD methods, such as finite difference, are not
computationally intensive, and will have a harder time exploiting the novel hardware paradigm introduced by GPUs.

5 CONCLUDING REMARKS

Meshfree methods have been gaining increasing levels of interest in recent years. In computational fluid dynamics, so
far the most prevalent meshfree methods are the vortex particle method and smooth particle hydrodynamics methods.
An impediment to the wider adoption of these methods for quite some time was the perceived computational expense,
in comparison with more mainstream CFD schemes. Currently, efficient algorithms are becoming available that are
able to make meshfree methods competitive in terms of computational complexity. Recent progress includes the
development of fast solution algorithms for the Gaussian radial basis functions used in vortex methods (in SPH it has
become customary to use compact support basis functions, but potentially Gaussians could be used instead with the
new efficient algorithms). Drives to produce software libraries to aid in the adoption of meshfree methods, aggregating
the experience of many researchers through the open source model, will also contribute to the maturation of the field.
As this happens, we will be able to explore with meshfree methods some of the remaining frontiers of CFD:

The need to straddle many scales in a simulation—particles of variable scale and density can be used quite
naturally to resolve different scales in the computational domain.

Algorithms that are able to detect and adapt to a solution—meshfree methods naturally can adapt. Means of
detecting features in a solution remain a challenge.

Hardware-aware software—meshfree methods could be especially well-suited to exploit the emerging massively
parallel architectures, such as GPU.

The capacity to tackle problems wit complex/moving geometry—enforcing boundary conditions with meshfree
methods is still an area where ample progress needs to be made. As this progress is made, the new formulations
will be easily extended to complex/moving boundaries, due to the simplified geometry descriptions allowed by
the meshfree model.
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Abstract: 3-D SPH simulations are getting more affordable due to ongoing computer hardware
improvement. This work aims to demonstrate that a hybrid OpenMP-MPI approach applied
to SPH can enhance the performance of the code on multi-core machines. The case of a dam
breaking and impacting an obstacle, where experimental data are available, is used for illustation.
The simulation is carried out with 1.3M particles initially regularly distributed. Performance
shows that the hybrid OpenMP-MPI approach performs better than MPI only on 1 rack of a
BlueGene/P. Comparison with experiments show good agreement in terms of water elevation.

Keywords: SPH, HPC, hybrid OpenMP-MPI.

1. INTRODUCTION

The pseudo-compressible Navier-Stokes equations written in Lagrangian form for Newtonian fluids and
incompressible laminar flows read:



















Du

Dt
= −

1

ρ
∇p+∇ · (ν∇u) + Fe,

Dρ

Dt
= ρ∇ · u,

(1)

where u is the velocity vector, t the time, ρ the density, p the pressure, ν the molecular viscosity and Fe an
external force, such as gravity, or any other force driving the flow. ’∇’ and ’∇·’ are respectively the gradient
and divergence operators. The system described by Eqs. (1) is closed by a state equation for the pressure
[1], which reads:

p =
ρ0c

2
0

γ

��

ρ

ρ0

�γ

− 1

�

, (2)

where ρ0 is a reference density, c0 a numerical speed of sound and γ a constant coefficient.
Particle position r is updated at each temporal iteration by the following time integration:

dr

dt
= u. (3)

Equations (1), (2) and (3) are discretised explicitly in time and the SPH approach is used to perform spatial
discretisation.

The key idea of SPH is that any flow property A can be expressed in any point of the fluid domain, lo-
calised by r, by a convolution product with the Dirac distribution δ, as:

A(r) =

�

Ω

A(r′)δ(r − r′)dr′, (4)
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where Ω is the whole fluid domain. The Dirac distribution δ is approximated by a smoothing function wh

called kernel (h is its smoothing length), as:

A(r) =

�

Ω

A(r′)wh(r − r′)dr′ +O
�

h2
�

. (5)

A discrete set of equations is obtained by approximating the integral of Eq. (5) by a Riemann summation,
as follows:

A(r) =
�

b

mb

ρb

Abwh(|r − rb|) +O(h2), (6)

where Ab denotes the value of A for particle b, with mass mb, located at position rb. The summation is
now discrete and the elemental volume dr′ (see Eq. (5)) is calculated as the particle volume defined from
the mass and the density as mb/ρb. The sum is in theory performed over all the particles b of the domain.
However, the use of kernel compact supports of radius ht, proportional to the smoothing length h allows
a reduction in the number of particles b which contribute to the sum in Eq. (6) and, thus to reduce the
computational time. Consequently, only particles b located in the sphere of radius ht and centered in a
contribute to the evaluation of the function A relative to particle a. Equations (1)-(3) are integrated by
SPH formalism and solved in the Spartacus-3D code [2] [3], developed at EDF R&D since 1999, mainly for
coastal and environmental applications [4].

2. PARALLELISATION

Three main steps are followed in the parallel version of the code, during a time step:

• Step 1: Generation of a list of particles,
• Step 2: Search for particle links and link-based particle re-indexing,
• Step 3: Resolution of the equations.

The profiling of the SPH scalar version of the code shows that up to 60% of the CPU time is spent during
Steps 1 and 2. The link-based particle re-indexing is important to reduce the time spent to calculate the
operators.
SPH operators are expressed in terms of differences or sums of contribution of particles a and b, with a
summation on b. Since spline kernels have a compact support, each particle a is only linked to its closest
neighbours b for which |r − rb| < ht.
Most arrays are local and their size is computed from the number of particles located on a given processor
augmented by the number of particles playing a role in the calculation of the operators. This allows to save
memory and to avoid global communications, while building the operators. The hybrid OpenMP-MPI is
implemented allowing up to 4 threads.

3. RESULTS

The dam breaking case is investigated to demonstrate the ability of Spartacus-3D to compute 3-D free surface
flows. The experiment performed by the MAritime Research Institute Netherlands (MARIN) is described in
[5]. As shown in Fig. 1, four vertical water elevation probes have been used: one in the reservoir and three
in the tank.

3.1 Performance

The simulations are carried out on 1 rack of Daresbury Laboratory’s BlueGene/P (1,024 nodes of quad-core
850MHz PowerPC), with MPI only and with the hybrid OpenMP-MPI approach. 1, 000 iterations of the
dam-breaking case are performed.

Figure 2 shows that for a relatively small number of particles (1.3M, which means less than 320 particles
per core for 4, 096 cores when the whole rack is used), the behaviour of the code is linear up to 2, 048 cores
for all the simulations and the code only starts to lose efficiency going from 2, 048 to 4, 096 cores. This is
due to the fact that the calculation part is not long enough to hide the communications between processors.
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Fig. 1: Geometry of the dambreak. Left: measurement positions for water elevation in the dambreak experi-
ment [5]. Right: zoom of the box.
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Fig. 2: Total CPU time against number of cores for a 1.3M particle simulation.

The fastest run is carried out in hybrid OpenMP-MPI mode, for 4, 096 cores, which confirms the efficiency
of the hybrid OpenMP-MPI approach for multi-core machines.

4. COMPARISON WITH EXPERIMENT

The comparison with experiment is carried out on the water elevation in the four probes. Figure 3 shows
that the water elevation computed by the simulation matches the experiment before the water impacts the
obstacle. After this stage, a shift of phase that remains to be explored occurs, for all the probes.
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Abstract: In this work, we simulate two-dimensional viscous incompressible flows around
submerged bodies, based on a vortex particle method with re-meshing formulation. A panel-free
approach is used for the treatment of the boundary conditions of the submerged bodies. The
no-slip and no-through boundary conditions of a solid body immersed in a flow are fulfilled
by placing a vortex sheet of a given strength γ at the walls of the body, and then diffusing the
vortex sheet into the flow. For this, we use a panel-free method based on radial basis functions
(RBF) to find the strength of the vortex sheet, and to diffuse the vortex sheet. The numerical
implementation of the method makes use of a combination of fast parallel algorithms to speed-up
the many stages of the simulations: parallel fast summation methods are used for the evaluation
of the velocity and vorticity fields; and, an ad-hoc fast linear solver is implemented for the
solution of dense linear systems of equations.

Keywords: meshfree, particle, parallel, vortex method, panel method

1 INTRODUCTION

In the viscous vortex particle method, the vorticity field is described by a Lagrangian representation. This is achieved
by discretizing the vorticity field into N vortex particles which then move with the local velocity. The velocity field is
represented in the following way:

ω(x, t) ≈ ωσ(x, t) =
N

i=1

Γi(t)ζσ (x− xi(t)) , (1)

where Γi is the circulation of a particle, xi corresponds to the position of a particle, and ζσ corresponds to the char-
acteristic distribution of vorticity of each node. Often, ζσ is represented by a gaussian kernel. From the vorticity field
obtained from equation (1), the velocity field can be recovered by means of the Biot-Savart law,

u(x, t) = (K ∗ ω)(x, t) = − 1
2π

N
i=1

ΓiK(xj − xi) +U0(xi, t) (2)

where K = ∇ ×G, G corresponds to Green’s function of the Poisson equation, and U0 is the free stream velocity.
More details in the vortex method can be found in [11], [1].

As it can be seen from equation (1) and (2), in order to compute the value of vorticity and velocity for one particle
location, the effect of all other N − 1 particles must be considered. Therefore, if a naive approach is used to evaluate
the velocity and vorticity fields at all N particle locations in the system, the total work will be in the order of O(N2)
calculations. Furthermore, real engineering problems, where certain acceptable accuracy is desired, may involve mil-
lions of particles. When using naive implementations for the evaluation of equations (1) and (2), simulations in the
order of tens of thousands of particles become unpractical due to the limited computational resources that are available.
However, in the following paper, a parallel version of the code is used, and methods that decrease the scheme toO(N),
such as the Fast Multipole Method and Fast Gauss Transform are implemented.

1.1 Boundary conditions for the vortex particle methods

Formulating the boundary conditions on a solid wall is notoriously problematic in vortex methods. The difficulty arises
due to the absence of a vorticity boundary condition for the Navier-Stokes equation, equivalent to no-through and no-
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Figure 1. This diagram shows the vortex method algorithm when solving a problem of flow with a solid boundary.
One loop in the diagram corresponds to one ’time step’. The orange colored boxes correspond to the steps of the
vortex particle method without considering boundary conditions. The green colored box represents the step where the
boundary conditions of the solid are considered.

slip at the wall. The problem has been addressed by means of a model of vorticity creation at the solid wall, initially
proposed by Chorin [2]. The idea is to place a vortex sheet around the boundary, in order to nullify the spurious velocity
generated there after the inviscid substep.

As described in [10], [9] and [4], the following equation to obtain the strength of the vortex sheet that produces a
velocity discontinuity of uslip,

γ(s)− 1
π


[
∂

∂n
[log | x(s)− x(s) |]− ρ1(s)

L
]γ(s)ds = −2 uslip · ŝ (3)

here, γ(s) is the strength of the vortex sheet, uslip is the velocity discontinuity created by the vortex sheet, ŝ is a
unitary vector tangent to the solid in the direction of integration, ρ1 is the eigenfunction of the first term in the spectral
decomposition of the kernel, and L the perimeter of the body.

Placing the vortex sheet found with (3), around the boundary, the spurious slip velocity generated in the inviscid step is
cancelled. After obtaining the vortex sheet, this needs to be transfered to the nearby particles in the fluid domain. This
is done by solving a diffusion equation with the correct boundary conditions (a, b, c).

∂ω

∂t
− ν∆ω = 0, ω(t− δt) = 0, ν

∂ω

∂n
=
−γ(s)
δt

(a, b, c)

1.2 Algorithm description

The complete algorithm for the vortex particle method with boundary conditions can be summarized in the following
stages: discretization of the flow into particles, velocity evaluation at the particle’s location, convection and diffusion
of the particles, solving vortex sheet’s strength and diffusion, and spatial adaptation. A diagram that represents the
different stages of the algorithms is presented in Figure 1. Specific details of the stages of the algorithms can be found
in [1], [3].

2 PANEL-FREE BOUNDARY CONDITIONS FOR THE VORTEX PARTICLE METHOD

2.1 Radial basis functions

Radial basis function method (RBF) is often used to interpolate an unknown function. This is done by representing the
function as a linear superposition of basis functions:

f(x) ≈
N

i=1

φ(| x− ci |)αi (4)

where the function f(x) is represented as a linear combination of basis functions (φ), each centered at a point ci and
with weight αi. Then, for a given set of basis functions, the idea is to choose the coefficients αi such that equation (4)
is satisfied at the collocation points. As it was shown by Kansa in [7], the RBF function approximation can be used as
a method in order to solve partial differential equations and also integral equations.
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In this work, we use an RBF approach to enforce the no-slip and no-through boundary conditions of a solid body
immersed. For this, we solve the equations presented in §1.1, we make use a panel-free method based on radial basis
functions (RBF) to find the strength of the vortex sheet, and to diffuse the vortex sheet.

2.2 Finding the vortex sheet strength

The first step is to discretize the surface of the solid into a set of points. The points will constitute the RBF centers
for the computation of the vortex sheet strength, γ. Then, the slip velocity, which was caused by the previous inviscid
sub-time step, is computed using equation (2) at the surface of the boundary.

Having the slip velocity, it is possible to obtain γ from (3). The value of ρ1 can also be solved with an RBF approach,
using the same principles that will be used when solving the Fredholm equation of the second kind, which will be
described in detail below. For more details on ρ1, see [8]. Let the RBF approximation of the function of γ(s) around
the surface of the solid body be

γ(x) ≈
N

i=1

φ(| x− ci |)αi (5)

Now, applying (5) to equation (3) at every boundary node position, we get the following system of equations

[φki −Θki + Λki] · [αi] = [ui
slip · si] (6)

where x = xk and

Θ =


1
π

∂

∂n
[log | x− x |]φ(| x − ci)dx, Λ =


ρ1
L
φ(| x − ci |)dx

Solving this linear system of equations, we will find the coefficients of the RBF representation that best fits the function
of the strength of the vortex sheet around the surface of the body.

2.3 Diffusion of the vortex sheet

After the strength of the vortex sheet on the body is found, such that it cancels the slip velocity, it is necessary to diffuse
the vorticity that was created on the surface to the surrounding fluid. This step is based on the solution of the PDE
problem described in (a, b, c), once again, with an RBF approach, as described in [12]. An RBF approximation of the
vorticity for the whole field can be written as,

ωt(x) =
N

i=1

βt
iφ(| x− ci |) (7)

By using the RBF representation for the PDE, and the boundary condition (knowing that ∂ω
∂n = ∇ω · n), treating the

time differential operator with a Crank-Nicholson scheme, and applying this to every node in the domain, we can write
the following matrix equation:

[φ− δtνθ∆φ][βt] = [φ+ δtν(1− θ)∆φ][βt−δt] (8)

for nodes that are located on the boundaries, the Neumann boundary condition shown in (a, b, c) has to be enforced:

N
i=0

βt
i∇φ(| x− ci |) · n =

−γt(s)
νδt

(9)

and by solving for the domain and boundary nodes the following equation is obtained:

A
B


· [β] =


C
0


(10)
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Figure 2. Preliminary results on the flow around a circular cylinder. These figures show the vorticity generated around the cylinder.

where A is an N×M matrix with∇φij ·ni as coefficients; B is a M−N×M matrix whose values are φij−δtνθ∆φij ,
and i runs from N + 1 to M . β is a vector with the coefficients of the RBF approximation shown in (7). C is a vector
of size N , with γi

νδt as values and finally, the remaining M −N positions of the RHS are 0.

Here we have M nodes in the whole domain (domain and boundary), from which the first N nodes are located on the
boundary (M −N is the number of nearby particles considered for diffusion). Solving this system, the coefficients of
the RBF expansion in (7) are obtained. Then, using (7), the vorticity field diffused from the vortex sheet is computed.

The position of the domain nodes for this RBF scheme are the positions of the existing vortex particles. However, the
core size of the basis function, which is a Gaussian, is not necessarily the same as the core size of the particles. This is
an advantage, since we can fix the value of the basis function’s core size as we wish, being a very important factor in
the accuracy of any RBF method.

3 NUMERICAL METHOD AND PRELIMINARY RESULTS

The implementation of the method makes use of several components in order to speed-up the computations. The focus
is centered around the computational bottlenecks of the algorithm, namely: the velocity evaluation, the vorticity eval-
uation, and the solution of a dense system of equations. In order to obtain results within a reasonable computational
time, these computationally intensive steps are efficiently computed by the following algorithms: parallel fast multi-
pole method [5], fast gauss transform [6], and a fast parallel solver for dense systems of equations. Parallel efficient
implementations of the algorithms are currently being integrated into the main simulation code, and numerical results
using the fully parallel version of the code are going to be presented at the conference.

Using a not fully optimized implementation, we present some preliminary results. As a test, we have computed the
flow around a circular cylinder. Our approach has been tested for an impulsively started flow, for Reynolds number Re
= 200. Figures 2(a) and 2(b) show the vorticity field at different time steps of the calculation. The number of particles
in the system is in the order of tens of thousands of vortex particles.

4 CONCLUSIONS

In this work, we simulate two-dimensional viscous incompressible flows around submerged bodies, based on a vortex
particle method with re-meshing formulation. A panel-free approach is used for the treatment of the boundary condi-
tions of the submerged bodies. Parallel optimized versions of the fast multipole method, fast gaussian summation, and
fast solution of dense system of equations are currently being integrated into the simulation code. For the conference
date, we will present a fully parallel implementation, which would allow us to try much more interesting problems,
such as multi-body simulations.
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Abstract: Recent advances in the parallelizability of fast N -body algorithms, and the pro-
grammability of graphics processing units (GPUs) have opened a new path for particle based
simulations. For the simulation of turbulence, vortex methods have been considered as an in-
teresting alternative to finite difference and spectral methods. The present study focuses on the
efficient implementation of the fast multipole method and pseudo-particle method on a cluster
of NVIDIA GeForce 8800 GT GPUs, and applies this to a vortex method calculation of ho-
mogeneous isotropic turbulence. The results of the present vortex method agree quantitatively
with that of the reference calculation using a spectral method. Keywords: Vortex Methods; Fast

Multipole Methods; GPU clusters; Homogeneous Turbulence

1 INTRODUCTION

Particle-based simulations are a natural method for solving discrete systems such as in astrophysics, and molecular
dynamics (MD). They also provide an interesting alternative to grid-based methods for solving continuum systems,
as seen in smooth particle hydrodynamics (SPH) and vortex methods (VM). The computational cost of treating the
continuum system as an N-body problem is relatively large compared to conventional grid based methods. However,
recent changes in the hardware architecture are likely to offer a significant advantage to N-body problems.

The traditional approach to accelerate N-body problems has been the use of hierarchical algorithms, such as the Barnes
& Hut treecode [1] and the fast multipole method (FMM) [2]. A more recent trend in the field of N-body problems has
been the efficient implementation of such hierarchical algorithms on GPUs. Stock & Gharakhani [3] implemented the
treecode on the GPU to accelerate their vortex method calculation. Similarly, Gumerov & Duraiswami [4] calculated
the Coulomb interaction using the FMM on GPUs. The relative acceleration ratio between the fast algorithm and direct
calculation was 17/127 ≈ 0.134 for Stock & Gharakhani and 72/855 ≈ 0.084 for Gumerov & Duraiswami. The
difference between the relative acceleration ratio is possibly caused by the difference in the data-parallelism of the
treecode and FMM.

In the present study, we apply the fast multipole method on a cluster of 32 GPUs to the calculation of a homogeneous
isotropic turbulence using vortex methods. The results are compared with a spectral method code to evaluate the
relative performance of vortex methods when they are accelerated by GPUs.

2 CALCULATION METHOD

2.1 Vortex Method

The present vortex method uses Gaussian blobs as calculation elements. The vorticity equation is solved in a fractional
step manner by solving for the convection, stretching, and diffusion separately. The velocity and stretching calculation
are accelerated by the FMM and executed on the GPU. All other components are executed on the CPU. A convergent
core spreading method is used to account for the diffusion. In this method the core radius of the vortex elements
are reinitialized every 10 time steps and the vortex strength is calculated by radial basis function interpolation. The
BICGSTAB method is used to solve the system of equations, while the FMM neighbor list is used to accelerate the
calculation of vorticity.
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(a) CPU (b) GPU

Figure 1. Calculation time of FMM on parallel CPUs and GPUs

2.2 FMM on GPUs

In the present calculations, we use NVIDIA’s GeForce 8800GT, which has 112 streaming processors where 8 streaming
processors are grouped into a multiprocessor. Each multiprocessor has 16 Kbyte of shared memory, which can be
accessed at high speed. The clock frequency of the multiprocessor of our XFX’s GPU is 1,562 MHz, where 2 single
precision floating point operations can be performed per clock cycle. Thus, the peak performance of the GeForce 8800
GT is 350 Gflops (= 112× 1, 562× 2).
In order to execute the FMM efficiently on this architecture, the following modifications were made to the FMM. First,
the complex spherical harmonics were transformed to real basis functions, in order to avoid complex arithmetic on the
GPU. Second, in order to minimized the memory usage per interaction, all of the tranlation matrices were generated
on-the-fly. Third, the box structure and interaction list of the FMM are restructured and renumbered to match the
number of threads per block on the GPU, so that no threads remain idle.

2.3 Parallelization

We used 32 nodes of PCs (HP xw4600), each of them having a dual-core CPU (Intel Core2 Duo E6850), 4Gbyte of
memory, and a GPU (XFX PV-T88P-YDQ4 which has NVIDIA’s GeForce 8800 GT). The GPUs were plugged in via
16x PCI Express 2.0 slots. The PCs were connected by a gigabit ethernet network through a 48-port HUB (NETGEAR
GS748TS-100JPS).

The present study involves the parallelization of the FMM on distributed memory architectures using MPI. Balancing
the computational workload and amount of data transfer between the processes is a challenging task for adaptive
FMMs. However, for the present calculation of the homogeneous turbulence, the particle density remains constant
throughout the entire domain and varies little over time. Furthermore, the periodic boundary condition prevents the
load of the boarder cells from becoming small. Therefore, the workload between different processes can be balanced
by simply partitioning the parallel computation domain according to the oct-tree structure of the FMM.

3 CALCULATION RESULTS

3.1 FMM on a cluster of GPUs

In order to evaluate the performance of the parallel GPU calculation, we measured the performance of the velocity
calculation for both parallel CPUs and parallel GPUs. The particles were randomly positioned in a [−π, π]3 domain,
and given a random vortex strength between 0 and 1/N . The core radius was set to σ = 2πN−1/3, which results in an
average overlap of σ/∆x = 1. The CPU used here is a Intel Core2 Duo E6850 and the code is written in Fortran 90
and compiled on a Intel Fortran compiler 10.0 with the "-openmp" option. The GPU is a NVIDIA GeForce 8800 GT
and the Fortran code calls a CUDA library, which was compiled with NVCC using the "-use_fast_math" option.
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(a) Decay of kinetic energy (b) Energy spectra at t/T = 10

Figure 2. Decay of kinetic energy and energy spectra of the homogeneous turbulence calculation

Figure 1(a) shows the calculation time of the FMM on parallel CPUs, while Figure 1(b) shows the calculation time
on parallel GPUs, where N is the number of calculation points and nprocs is the number of processes. Even though
the calculations on the CPU were performed until N = 106, the range of the axes is kept the same for both plots. By
comparing the results for N = 106 between the two plots, it can be seen that the GPU is approximately two orders
of magnitude faster. However, the scalability of the parallel GPU calculation is quite small for N < 105, while the
scalability of the parallel CPU calculation remains large even for small N . This is caused by the inability to exploit
the full computational power of GPUs when the number of calculation points per process is small (N < 104). Another
cause may be that our code has inefficient parts that constantly take around 0.1s regardless of N , nprocs, or the
whether it is processed on a CPU or GPU. Thus, the scaling appears to be bad for any run that should theoretically take
less than 0.1s. The justification for having such routines in our code is based on the fact that we would rather have a
generalized FMM that can handle different equations and different hardware architecture at the cost of adding 0.1s to
our total execution time, than to limit the capability of our code just to improve the scalability for small problems.

It maybe worth noting that the equation calculated here is the velocity calculation for vortex methods with elliptic
Gaussian smoothing functions, which is approximately an order of magnitude more time consuming than a simple
potential calculation. We have indeed confirmed that our code can calculate the potential function for N = 106 in less
than 1s on a single GPU.

4 CALCULATION OF ISOTROPIC TURBULENCE

4.1 Calculation Conditions

The flow field of interest is a decaying isotropic turbulence with an initial Reynolds number of Reλ ≈ 100. The
calculation domain is [−π, π] and has periodic boundary conditions in all directions. In the present vortex method
calculation, the periodic boundary condition is approximated by the use of periodic images. Details of the periodic
FMM are shown in our previous publication [8]. The order of multipole expansion was set to p = 10, and the number
of periodic images was 25 × 25 × 25 for the present calculations. We used a total of 32 GPUs for the calculation of the
isotropic turbulence.

The spectral Galerkin method with primitive variable formulation is used in the present study as reference. A pseudo-
spectral method was used to compute the convolution sums, and the aliasing error was removed by the 3/2-rule. The
time integration was performed using the fourth order Runge-Kutta method for all terms. No forcing was applied to
the calculation, since it would be difficult to do so with vortex methods.

4.2 Calculation Results

Figure 2(a) shows the decay of kinetic energy. Spectral is the spectral method and V ortex is the vortex method
calculation. The time is normalized by the eddy turnover time T . The homogeneous isotropic turbulence does not have
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(a) Spectral method (b) Vortex method

Figure 3. Isosurface of the second invariant of the velcoity derivative tensor

any production of turbulence, and thus the kinetic energy decays monotonically with time. This decay rate is known to
show a self-similar behavior at the finial period of decay. This is confirmed by the straight drop of K that appears at
the end of this log-log plot. The results of the two methods agree perfectly until t/T = 10, where the kinetic energy
drops an order of magnitude from the initial value.

Figure 2(b) shows the energy spectrum at t/T = 10. k is the wave number, and E(k) is the kinetic energy contained
in the wave number k. The Reynolds number is Reλ ≈ 50, and at this Reynolds number it is difficult to observe
an inertial subrange of k−5/3, nor a k4 behavior at low wave numbers. The results of the two methods are in good
agreement, except for the fact that the vortex method slightly underestimates the energy at higher wave numbers.

The isosurface of the second invariant of the velocity derivative tensor II = ui,juj,i at time t/T = 10 is shown in
Figure 3. The result of the spectral method and vortex method are almost indistinguishable. These results indicate the
soundness of the present vortex method calculation using GPUs. It is fair to say that the single precision calculation of
the velocity does not have any detrimental effect on the final accuracy of our turbulence simulations. Furthermore, the
calculation of the present vortex method on 32 GPUs took nearly the same amount of time as the spectral method on
32 CPUs.

5 CONCLUSION

The calculation using the GPU (GeForce 8800GT with nvcc -use_fast_math) is approximately 100 times faster than the
CPU (Intel Core2 Duo E6850 with ifort -openmp) calculation. The parallelization efficiency of the FMM on parallel
GPUs is relatively low when the number of calculation points is small (N < 105), whereas the parallel CPU scaling
is good even for N < 104. However, the scaling of the parallel GPU implementation is good for problems with larger
N , and the velocity calculation for N = 107 vortex elements took approximately 4.6s.

The present acceleration technique enabled the calculation of a homogeneous isotropic turbulence using a relatively
large number of vortex elements. The kinetic energy decay and energy spectrum of the well resolved vortex method
calculation agreed quantitatively with that of the reference calculation using a spectral method. Such accuracy for
completely meshless turbulence simulations have not been reported previously. Furthermore, the calculation of the
present vortex method on 32 GPUs took nearly the same amount of time as the spectral method on 32 CPUs.
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Abstract: Low speed flows over an elliptic profile in the presence of a synthetic jet  and the Coanda effect  

are investigated numerically. The synthetic jet parameters including its location over the profile are 

optimized for minimum drag  using a Response Surface Methodology. The flow solutions re-

quired by the design of experiment are computed in parallel in a PC cluster. 

Keywords:  Coanda effect, synthetic jet , design of experiment, active flow control

1. INTRODUCTION

In recent years, the studies show that, high lift/low drag requirement of an aircraft may be achieved by active flow 

control. Active flow control is the ability of controlling the flow with addition of energy and without attachment of 

auxiliary  devices  such as  riblets,  flaps  or  large-eddy breakup devices  [1,  2].  Lift  and thrust  enhancement,  drag 

reduction, noise abatement, stall delaying, full/partial flow reattachment, mixing enhancement are the main outcomes 

of active flow control.

One way of active flow control is the use of blowing jets from aerodynamic surfaces used in many applications for 

separation and circulation control. Blowing jets are mostly used for circulation control of the blunt trailing edges. 

Blowing air near the trailing edge tangential to the surface, attaches the separated flow to the circular surface. This 

tendency of a stream of fluid to stay attached to a convex surface, rather than follow a straight line in its original  

direction is called Coanda Effect, and an example is shown in Fig. 1. 

Another way of active flow control is by using synthetic jets. A synthetic jet results from an oscillating membrane in 

an enclosed area with an orifice at the top. The oscillating membrane sucks the air from the flow, and blows the air 

back into the flow. In this method, the flow gains momentum with introducing zero-net mass flux into the flow. 

The aim of this study is to optimize synthetic jet parameters over a 12.5% thick elliptic profile with and without 

using the Coanda effect. In preliminary studies, the numerical method is first validated with the presence of a steady-

blowing jet.  The optimization is carried out,  next,  without  using the Coanda effect  at zero angle of  attack. The 

synthetic jet parameters are optimized to minimize the drag coefficient while keeping the jet power constant. In full 

paper  the  synthetic  jet  parameters  for  the  Coanda  effect,  will  also be  optimized  for  the  maximum downstream 

location of the separation point at both low and high angle of attacks. 

2. NUMERICAL METHOD

Unsteady,  turbulent  flows  over  a  12.5% thick elliptic  profile  are  computed  by a Navier-Stokes  solver.  A jet  is 

implemented by imposing the velocity boundary conditions on the wall. It is defined by six parameters; the jet type, 

the jet velocity (ujet), the jet frequency (Fjet), the jet location (xjet), the jet slot width (wjet) and the jet angle (αjet). The 

jet parameters are then optimized for minimum drag using Response Surface Methodology (RSM). In RSM, the 

response surface for the objective function is represented by a 2nd order polynomial function: 
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The  unknown coefficients  in  the  response  function  are  evaluated  by Least  Squares  method  following  a certain 

number of function evaluations based on a design of experiment. Box-Behnken and Full Factorial methods may be 

used for the design of experiment. The corresponding function evaluations needed are given in table 1:

Table 1: Number of flow solutions needed for Box-Behnken and Full Factorial methods

Number of Optimization 

Variables

Number of Flow Solutions for 

Box-Behnken Method

Number of Flow Solutions 

for Full Factorial Method

3 15 27

4 27 81

5 46 243

2.1 Parallel Computations

The RSM method lends itself to parallel computations inherently.  The function evaluations, which, in this case, 

are unsteady flow solutions, may all be performed in parallel. In additions, each flow solution is computed in parallel  

based  on domain  decomposition.  PVM library  routines  are used for  Interprocess  communication  in  the  parallel 

computations. Computations are performed in a 64 processor Linux cluster.

4. PRELIMINARY RESULTS

In an earlier study, the flow solutions with and without a steady jet over a 12.5% thick elliptical profile are first 

validated  [3-6].The  validation  of  the  Coanda  effect  is  also  given in Figures  1 and 2.  As shown,  the  flow field 

prediction and the distribution surface pressure are, in general, in agreement with the experimental and numerical 

studies of Shrewbury et al [2]

In a preliminary optimization study for minimizing the drag at an angle of attack of 0 degrees, 0.1 free stream Mach 

number and a Reynolds number of 1x106, the drag coefficient was reduced by 9.5%. The parallel computations took 

about 16 hours on 6 Intel quad-core processors (on 24 cores) with 2.33GHz clock speed.
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Fig. 1: The Flow around an elliptical profile [3]

Fig. 2:  Surface pressure distribution under the Coanda effect
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Abstract: The unsteady three dimensional compressible Reynolds averaged Navier Stokes 
equation was numerically computed to analyze the flow and aero acoustic fields past a circular 
cylinder by applying a high order and high resolution numerical method. While the numerical 
computation domain was set up wider than the methods with non-reflective characteristic 
boundary condition, the very simple boundary conditions were used. For the numerical result, 
the periodic characteristic of Strouhal Number due to vortex shedding was comparatively 
analyzed with other experiment values and two dimensional numerical results. Three 
dimensional Karman vortex shedding characteristic disturbed by secondary vortices and the 
propagation characteristic of pressure waves and acoustic waves were analyzed. 
Keywords: Three Dimensional aero acoustic fields, Optimized High-Order Compact Scheme,  
Vortex Shedding, OpenMP Parallelized Computation, Secondary Vortex 

 

1. INTRODUCTION 

Even though research on the flow over a circular cylinder has been actively carried out up to the present, there are 
still many un-clarified phenomena such as wakes, secondary vortices, aerodynamic acoustic characteristics etc...[1].  

The flow is symmetric with respect to the front and back if the Reynolds Number is less than 45. If the Reynolds 
Number is from 45 to 190, two dimensional vortex shedding will occur in the rear of the cylinder. If the Reynolds 
number is over 190, the vortex shedding changes to three dimensional unstable structures. This vortex shedding 
becomes the main cause of vibration, noise and periodic lift and drag on the cylinder. Norberg[1] compiled the 
theoretical, experimental and numerical results for a circular cylinder flow and analyzed the flow characteristic 
according to the Reynolds number. He showed that there was a considerable difference in characteristics between 
experimental and numerical results up to the present. As the Reynolds number increases, three dimensional 
instability increases in the wakes. Because of the pressure change, Karman vortex will occur periodically and the 
periodic characteristic of lift and drag will be generated [2]. Williamson [3] showed that two dimensional vortex 
shedding occurs when the Reynolds Number is less than 180. When it is greater than this value, he showed that 
unstable three dimensional vortex shedding will appear as Mode A and Mode B form[4]. 

In this paper the wake flows and aero- acoustic fields over a circular cylinders have been researched by high order, 
high resolution techniques that are used in two dimensional aero- acoustic analysis [5]. While theoretical equations 
and experiments were mainly used for the analysis of aero- acoustic in the past [6], a variety of research is being 
carried out for the mutual interference between flow and acoustics by using high order computation techniques in 
recent times. There are numerical instabilities, because a high order technique is a kind of central difference scheme.  

The artificial dissipation model proposed by Kim&Lee [7] was applied to three dimensional flows to suppress the 
numerical instability. Numerical analysis using the high order technique requires a long computation time and a 
large memory capacity. Therefore, in order to improve the processing time, OpenMP parallel processing method 
was used. For the numerical result, the periodic characteristic of Strouhal Number due to vortex shedding was 
comparatively analyzed with other experiment values and two dimensional numerical results. The characteristics of 
second vortex and aero- acoustic fields were analyzed.  

2. GOVERNING EQUATIONS AND NUMERICAL ANALYSIS METHOD 

The non-dimensionalized three dimensional unsteady compressible Reynolds Averaged Navier-Stokes equation was 
transformed into a general coordinates, as Equation (1).  



140

21st International Conference on Parallel Computational Fluid Dynamics

ζηξζηξ ∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ VVV GFEGFE

t
Q ˆˆˆˆˆˆˆ

  (1) 

The cylinder diamerer (D), free stream velocity and free stream density are non-dimensional reference values, and, 
ηξ ,,t  and ζ  are time and generalized coordinates.  The symbols are referred to the reference literatures [8]. 

For a high order, high resolution numerical technique, OHOC (Optimized High-Order Compact) numerical 
technique used by Kim& Lee [7] in two dimensional aero-acoustic analyses was applied to three dimensional flows. 
For numerical differentiation, an implicit method using 7 node points was used, as shown in Equation (2). The 
coefficients are as shown in reference [5]. In order to maintain high resolution in time direction, a fourth order 
Runge-Kutta explicit method was used [9]. 
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While it is possible to obtain high resolution with OHOC technique, dissipation and diffusion errors occur. These 
errors affect numerical stability significantly, because the wave characteristic cannot be accurately reproduced 
unlike an upwind scheme due to the characteristics of central difference method. In order to reduce this error and 
increase the stability of numerical scheme, the adaptive nonlinear artificial dissipation model proposed by Kim&Lee 
[7] was applied to the three dimensional flow.  

The computation domain was set up to be 200 and )2,,2/( DDD πππ times the diameter D in the radial direction and the 
spanwise direction, respectively.  The number of O-type grid system )60,40,20(141201 ××  was used. Figure 1 
shows the sample grid. In most of research for compressible flow, the wave reflection from the boundary is 
suppressed by using a non-reflecting characteristic method. However, for the high resolution technique, the wave 
reflection is suppressed with numerical dissipation by a wide area of buffer zone, because the wave reflection is not 
sufficiently suppressed even though a non-reflecting condition is used. In this paper, a wide numerical computation 
zone was set up and a coarse grid was used in the distant boundary region. . Therefore, while the numerical 
computation domain was set up wider than the methods with non-reflective characteristic condition, the boundary 
conditions were given very simply for non-reflecting condition.  

For the parallel processing technique, the OpenMp method uses a shared memory based on a thread and allows 
relatively easy programming, the MPI method is carried out with independent memory in each processor with data 
communication, and the Cluster OpenMP has the advantages of both. OpenMP was mainly used in this research 
because of CPU time consumption for data communication 

3. RESULT AND DISCUSSION 

Fig.  1: Three dimensional grid system Fig.  2: Strouhal number versus Reynolds number

In Figure 2, the Strouhal number ( ∞= UfDSt / ) of lift coefficient was compared with other numerical results and 
experiment values, for the variations of Reynolds number and spanwise length. The Reynolds number ranges from 
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300 to 1000, which belongs to mode B referred by Williamson [3].  

The results seriously differed from the 2-dimensional result of Williamson [3]. Even though the results in the range 
of mode B Reynolds number have a little difference with Williamson [3], they very closely agree with the Leweke 
[9][10][11].  There are no significant differences for the variation of spanwise length.  

Fig.  3(a): Time histories of lift coefficient  
at Re=300

Fig.  3(b): Time histories of lift coefficient 
at Re=1000

Figures 3(a) and (b) shows the history of the lift coefficients for the Reynods number of 300 and 1000. Though the 
results of Reynolds number of 300 are converged to a periodic steady state, the results of Reynolds number of 1000 
have other characteristics of low frequency for the three dimensional instability. In the other words, there are 
significant three dimensional effects in the case of Reynolds number of 1000, but there are no significant effects in 
the case of Reynolds number of 300.  

Figure 4 shows the three dimensional Karman vortex disturbed by the secondary vortex. The strength of secondary 
vortex is very weak compared to the main Karman vortex. However, it can introduce flow instability as shown in 
Figure 3 of the history of lift coefficients.  

Fig.  4:  3D karman vortex at Re=1000, 
 spanwise length=2πD Fig.  5: Visualization of dipole sound field on the  

center cross section of circular cylinder

In Figure 5, pressure contours were drawn on the center cross section of z-axis in order to observe the propagation 
characteristic of acoustic waves for instance. From the figure, the numerical computation has been verified properly 
from the non-physical reflection, the propagation of pressure perturbation, and the periodic wake flow that is 
transmitted well even for long distances.  

The pressure contours of Figures 6 show the propagation of sound waves and the Karman vortex shedding 
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simultaneously. Although the Karman vortices are slowly shedding with the pressure waves, the acoustic waves are 
propagated with a sound speed. The speed of propagation of acoustic waves, compared to the pressure waves, is 
very fast. The sound fields are affected by the three dimensional Karman vortices disturbed by the secondary 
vortices around the wake flow[12]. 

(A)  (B) 

Fig.  6: Visualization of dipole sound field and Karman`s vortex during one period 

4. CONCLUSIONS 

The unsteady three dimensional compressible Reynolds averaged Navier Stokes equation was numerically computed 
to analyze the flow and aero acoustic fields past a circular cylinder by applying the OHOC technique that is a high 
order and high resolution numerical technique. To increase the computation speed for the large amount of numerical 
computations, a parallel processing method was used. Rather than the MPI method that requires massive data 
exchange between numerical domains, OpenMP that uses shared memory, was used. Since a non-reflective 
characteristic boundary condition needs a large buffer zone for a high order technique, it is not efficient. Therefore, 
in this research, while the numerical computation domain was set up wider than the methods with non-reflective 
characteristic condition, the very simple boundary conditions were used. Strouhal number of lift was compared with 
other two dimensional numerical computation results and experiment values. Three dimensional Karman vortex 
shedding characteristic disturbed by secondary vortices and the propagation characteristics of pressure waves and 
acoustic waves were analyzed 
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ABSTRACT 
 

This abstract describes a multidisciplinary computational study undertaken to compute the free-flight 
aerodynamics including the dynamics derivatives of projectiles.  Advanced computational capabilities 
both in computational fluid dynamics (CFD) and rigid body dynamics (RBD) have been successfully 
fully coupled on high performance computing (HPC) platforms for “Virtual Fly-Outs” of munitions 
similar to actual free flight tests in the aerodynamic experimental facilities.  Time-accurate Navier-Stokes 
computations have been performed to compute the unsteady aerodynamics associated with the free flight 
of projectiles using an advanced scalable unstructured flow solver on a highly parallel Linux Cluster.  
Some results relating to the portability and the performance of the flow solver on the Linux clusters are 
also addressed.  Time-accurate numerical techniques include both the “virtual fly-out” and “virtual wind 
tunnel” techniques.  All aerodynamic force and moment coefficients including the dynamic damping 
derivatives have been extracted from the fully coupled CFD/RBD numerical solutions.  Time-accurate 
CFD has been used separately to compute the dynamic pitch-damping derivatives using the virtual wind 
tunnel technique.  Computed dynamic pitch-damping derivatives using this virtual wind tunnel method 
have been compared with those obtained from the fully coupled virtual fly-out approach and flight tests. 

 

COMPUTATIONAL METHODOLOGY 

As part of a Department of Defense High Performance Computing (HPC) grand challenge project, the 
U.S. Army Research Laboratory (ARL) has recently focused on the development and application of state-
of-the art numerical algorithms for large-scale simulations [1,2] to determine both steady and unsteady 
aerodynamics of projectiles with and without flow control.  Fully time-accurate CFD/RBD coupled 
methods do offer the greatest potential to provide the potential for accurate and simultaneous prediction 
of all aerodynamic coefficients including the dynamic derivatives (roll-damping, pitch-damping, and 
Magnus moments).  Our interest in the fully coupled techniques [3,4] is to use them to compute the flight 
trajectory of a projectile and fly it through the supercomputers similar to what happens with the actual 
free-flight of the projectile inside an aerodynamics experimental facility. 

 
The complete set of three-dimensional (3-D) time-dependent Navier-Stokes equations [5] is solved in 

a time-accurate manner for simulations of unsteady flow fields associated with both spinning and finned 
projectiles during flight.  The 3-D time-dependent Reynolds-averaged Navier-Stokes (RANS) equations 
are solved using the finite volume method [6,7]:  Second-order discretization was used for the flow 
variables and the turbulent viscosity equations.  Two-equation [8] and higher order hybrid RANS/LES [9] 
turbulence models were used for the computation of turbulent flows.  Grid was actually moved to take 
into account the spinning motion of the projectile and grid velocity is assigned to each mesh point.  This 
general capability can be tailored for many specific situations.  For example, the grid point velocities can 
be specified to correspond to a spinning projectile.  In this case, the grid speeds are assigned as if the grid 
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is attached to the projectile and spinning with it.  Similarly, to account for rigid body dynamics, the grid 
point velocities can be set as if the grid is attached to the rigid body with six degrees of freedom (6 DOF).  
For the rigid body dynamics, the coupling refers to the interaction between the aerodynamic 
forces/moments and the dynamic response of the projectile/body to these forces and moments.  The forces 
and moments are computed every CFD time step and transferred to a 6DOF module which computes the 
body’s response to the forces and moments.  The response is converted into translational and rotational 
accelerations that are integrated to obtain translational and rotational velocities and integrated once more 
to obtain linear position and angular orientation.  The grid point locations and grid point velocities are set 
from the dynamic response. 

 
For determination of dynamic derivatives, time-accurate CFD can be used separately to compute the 

dynamic derivatives using the virtual wind tunnel technique which really is a special case of the coupled 
method with translational motion set to zero.  In this case, all calculations are done only in the uncoupled 
mode with the zero translational velocity.  The spin component of the projectile or the angular velocity of 
the projectile is added to compute the rolling motion of the projectile.  With the addition of spin, time-
accurate calculations are performed for a few cycles of spin until converged periodic forces and moments 
are obtained.  A sufficient number of time steps are similarly performed for the angular pitching motion 
case where the pitching motion (sinusoidal, for example) is imposed. 

 
Our interest here is in the numerical prediction of dynamic derivatives of projectiles using time-

accurate viscous Navier-Stokes techniques and unstructured grids and in particular, for the pitch damping 
moment coefficient.  The pitch damping moment coefficient contains two parts; one part proportional to 
transverse angular velocity (pitching velocity, q), and a second part proportional to the rate of change of 
total angle of attack ( ). 

 

)C+C(
V
dqd  SV2

1= MomentDampingPitch mm
2

q 










2

                                (2) 

 
where Cmq

 is the pitch damping moment coefficient due to q , Cm
is the pitch damping moment 

coefficient due to  ,  is the air density, V is the projectile velocity, S is the projectile reference area, 
and d is the projectile reference diameter.  The pitch damping coefficient sum, )C+C( mmq 

is obtained 
from an oscillating forced motion of the projectile with respect to the center of gravity.  The imposed 
motion is sinusoidal and is given by a simple function,  

 
              )sin(0 tm                                            (3) 

 
where,  is the instantaneous angle of attack, m is the mean angle of attack,  0 is the pitch amplitude, 
and  is the frequency of oscillation.  With proper normalization, it can be written in terms of a reduced 
frequency, k which is given by k =  q d/ 2V. 

 
The roll damping moment is calculated from the unsteady rolling motion of the projectile.  In this 

case, projectile spins and time-accurate calculations are carried out with the body moving until the rolling 
moment is converged for a given constant spin rate. 

PARALLEL COMPUTATIONAL ASPECTS 

The CFD++ computational fluid dynamics simulations software runs on a wide variety of hardware 
platforms and communications libraries including MPI, PVM, and proprietary libraries of nCUBE, Intel 
Paragon etc.  Inter-CPU communications are included at the fine grid level as well as all the multigrid 
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levels to help ensure high degree of robustness consistently observed in using CFD++, independent of the 
number of CPUs being employed. 

 
The flow solver can be run on any number of CPUs in parallel.  The mesh files and the restart files 

that are needed/generated for single CPU runs are identical to those associated with multi CPU runs.  For 
multi-cpu runs, a domain-decomposition file is 
needed which defines the association between cell 
number and CPU.  The software suite includes 
several domain decomposition tools and it is also 
fully compatible with the METIS tool developed at 
the University of Minnesota.  The code runs in 
parallel on many parallel computers including those 
from Silicon Graphics, IBM, Compaq (DEC and 
HP), as well as on PC workstation clusters.  
Excellent performance (see Figure 1 for the timings 
on a 12-million mesh) has been observed up to 128 
processors on  IBM SP P3 (375 MHz) and 
especially on IBM SP P4(1.7GHz), and Linux PC 
cluster (3.06 GHz). 

RESULTS

Time-accurate numerical computations were performed using both virtual fly-out and virtual wind 
tunnel approaches for a fin-stabilized projectile.  The dynamic derivatives, the pitch damping moment and 
the roll damping moment coefficients were obtained from these solutions.  Specifically, uncoupled, 
unsteady CFD procedures were used to calculate the pitch-damping moment coefficients using sinusoidal 
pitching motion of the projectile. 

 

    
           (a)             (b)    
Figure 2.  (a) Surface mesh and (b) unstructured mesh near the finned projectile,. 
 
The supersonic projectile modeled in this study is an 

ogive-cylinder-finned configuration.  The length of the 
projectile is 121 mm and the diameter is 13mm.  The ogive 
nose is 98.6 mm long and the afterbody has a 22.3 mm, 
2.5° boat-tail.  Four fins are located on the back end of the 
projectile.   Each fin is 22.3 mm long and 1.02 mm thick.  
An unstructured computational surface mesh was first 
generated for this projectile (see Figure 2a).   The full grid 
generated was also unstructured (see Figure 2b) and the 
total number of grid points was about 6.5 million for the 
full grid. The first spacing away from the wall was selected 
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to yield a y+ value of 1.0.  In general, most of the grid points were clustered in the boundary-layer, near 
the afterbody fin, and the wake regions.  The projectile configuration has a base cavity (see Figure 2a) and 
was included in the mesh generation process using MIME [10]. 

 
Using the coupled CFD/RBD virtual fly-out method, numerical computations have been made for the 

finned body at an initial velocity of 1034 m/s.  The initial angle of attack was, α = 4.9o and initial spin rate 
was 2500 rad/s.  The orientation and the position of the projectile of course change from one instant in 
time to another as the projectile flies down range.  Figure 3 shows the variation of the Euler pitch angle 
with distance traveled.  As seen in this figure, both the amplitude and frequency in the Euler angle 
variation are predicted very well by the computed results and match extremely well with the data from the 
flight tests.  One can also clearly see that the amplitude damps out as the projectile flies down range i.e. 
with the increasing x-distance.  The results produced by the virtual fly-out simulations provide the total 
aerodynamic forces and moments at every time step as the projectile flies down range.  For a variety of 
reasons, one may want to extract the traditional aerodynamic force and moment coefficients from these 
coupled CFD/RBD simulations.  One way is to feed the CFD/RBD generated data back into software 
such as ARFDAS [11] and back out the aerodynamic coefficients with the same procedure used on the 
actual test data.  The extracted aerodynamic coefficients are compared with the same coefficients 
obtained using the actual test data.  The ARFDAS fitting procedure produces aerodynamic forces that 
match well with the computed results from the virtual fly-out of the projectile. 

 
The unsteady procedure in the virtual wind tunnel approach use the pitching and the rolling motions 

and provide not only the dynamic derivatives, but also all the traditional static aerodynamic force and 
moment coefficients.  For the finned projectile, emphasis is put on the numerical computation of the pitch 
damping moment coefficient and the roll damping moment derivative.  Sinusoidal pitching motion is 
imposed and time-accurate CFD computations have been performed at various supersonic velocities.  
Figure 4 shows the time-history of the pitching moment coefficient as a function of angle of attack at 
M=1.6.  Computed pitching moment coefficients 
shown here correspond to first two complete pitch 
cycles.  Each full cycle of imposed pitching motion 
includes both the pitch-up and pitch-down parts.  
Other than the initial startup differences, the computed 
results converge quite rapidly at this velocity.  Results 
obtained for the third cycle (not shown here) was 
virtually identical to that of the second cycle.  The 
pitch damping moment coefficient is related to the 
difference in the values of the pitching moment 
coefficients at zero degree angle of attack in this case 
between the up and down portions of the imposed 
pitching motion. 
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Computed static pitching moment coefficients as well as computed dynamic pitch damping moment 
coefficients were obtained from a series of time-accurate calculations at different supersonic velocities 
from M=1.6 to M=3.4 and are shown in Figures 5 and 6, respectively.  These computed results are 
compared with the data derived from free flight tests for the same projectile configuration using single 
and multiple fits.  Figure 5 shows the variation of the computed pitching moment coefficient with Mach 
number.  As shown in this figure, the static pitching moment coefficient increases with Mach number 
from M = 1.6 to M = 3.4 and the computed results match very well with the test results.  Figure 6 shows 
the variation of the dynamic pitch damping moment coefficient with Mach number.  Again, computed 
pitch damping moment coefficients have been compared to those obtained from the flight tests for the 
same configuration and the same supersonic velocities.  The computed results are generally in good 
agreement with the data and they are within the accuracy of the experimental test results.  The full paper 
will include results obtained for the roll damping derivatives.  Also, additional computations are in 
progress for a spinning projectile at a transonic speed and the full paper will include computed results for 
this case as well. 

 
CONCLUDING REMARKS 

This abstract describes a computational study undertaken to compute the free-flight aerodynamics and 
in particular, the dynamic pitch-damping derivatives of finned projectiles at supersonic speeds.  Fully 
three-dimensional time-accurate numerical techniques include both the “virtual fly-out” and “virtual wind 
tunnel” techniques.  Virtual fly-out simulations were performed using the coupled CFD and RBD 
methods.  Computed Euler pitch angles match very well with the data obtained from the range tests for 
the same projectile at a supersonic speed.  All aerodynamic force and moment coefficients including the 
dynamic damping derivatives have been extracted from the fully coupled CFD/RBD numerical solutions.  
Time-accurate CFD has been used separately to compute the dynamic derivatives using the virtual wind 
tunnel technique.  Computed dynamic pitch-damping derivatives obtained using this virtual wind tunnel 
method have been compared with those obtained from the fully coupled virtual fly-out approach and 
flight tests and are all in good agreement.  This work demonstrates a coupled method to accurately predict 
the time-accurate unsteady aerodynamics of projectiles and provides for a new way to obtain all 
aerodynamic coefficients including the dynamic pitch-damping and roll damping derivatives. 
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Abstract

The proposed paper examines the level of discretization error in simulation-based aerodynamic data-
bases and introduces strategies for error control in these databases. Simulations are performed using 
a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in 
user-selected outputs on a given mesh are estimated using the method of adjoint-weighted residuals 
and we use adaptive mesh refinement to reduce these errors below user-specified tolerances. Using 
this framework, we compare the cost and accuracy of three approaches for aerodynamic database 
generation. In the first approach, all cases in the database are computed on a fixed mesh – the de 
facto standard of aero-database generation. The second approach uses a uniform error tolerance, 
while a third approach uses a relative error tolerance linked to the output value. We quantitatively 
assess the error landscape for all three methods. This investigation provides insight into the sensitiv-
ity of the database to a variety of sources, such as the presence of shocks in the flow and the stiffness 
of the governing equations at sonic conditions or near the incompressible limit. The results show that 
such pathologies may cause variations in mesh sizes spanning one to two orders of magnitude, and 
highlight a significant weakness of the fixed-mesh approach. We propose hybrid strategies that mini-
mize simulation cost in sensitive regions of the database and quantitatively explore their use.

1. Introduction
 

HE SHIFT  to multi-core CPU architectures has rapidly accelerated the growth of supercomputing 
resources.[1] This marked increase in the level of high-performance computing now offers both 

unprecedented capability and capacity to the aerodynamic simulation community.[2] These systems are 
capable of aerodynamic simulations with 108-1010 degrees of freedom, offering ever increasing physi-
cal fidelity.[3,4] While such extremely large “capability” simulations are becoming commonplace, the 
engineering community has focused on the enormous capacity of these systems through an increasing 
reliance on parametric, trade and optimization studies. In industrial settings, the main role of high-end 
computing is performance database generation. Aerodynamic databases with 103-104 simulations have 
become common and “production CFD” is the mainstay of the workload on this hardware.

The quality of these databases hinges on the level of the discretization error associated with the simu-
lation outputs. Simply put, how much does the mesh influence the results? In this work, we use the 
method of adjoint-weighed residuals to estimate the discretization error in each simulation and exam-
ine the resulting error distribution. Adaptive mesh refinement  is used for error control in each case of 
the database. These investigations use the parallel multi-level Cartesian Euler solver developed in ref-
erences [5] and [6] to produce the aerodynamic data. This simulation package has been used exten-
sively on large shared and distributed memory systems and has very good parallel scalability.[2,3,7] The 
robustness and automation of this simulation package has led to its wide adoption for producing aero-
dynamic databases in support of engineering analysis and design.[8,9,10,11] 

The use of adjoint-based error estimates and adaptive mesh refinement in database construction in-
creases the computational cost of each data point  because several flow and adjoint solutions are re-
quired to generate a mesh that satisfies the user-specified output tolerances. The adjoint-solver, sensi-
tivity calculation, and error-estimator all use the same parallel, multilevel framework as the base Euler 
solver and all achieve the same high level of parallel efficiency.[12,13,14] 

T
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In addition to adaptively meshing a simulation, the error-estimation module can also be used in a 
single-pass mode to assess the error in a specific functional on a given input mesh. Provided that the 
Euler simulation on this mesh is sufficiently good, this method allows us to accurately assess the 
discretization-error in a specific output on a particular mesh. This approach can be applied to each 
simulation in an aerodynamic database, yielding an a-posteriori estimate of the error landscape for 
that database. 

Our investigations employ both of these techniques to investigate the role of discretization error in 
simulation-based aero data. We begin by briefly reviewing the salient features of adjoint-error estima-
tion using a discrete adjoint  solver. We then present both fixed-mesh and error-controlled databases 
spanning incompressible, transonic and supersonic flow. Our analysis tracks both error and cost in 
these databases and aims to quantitatively understand the implications of both strategies.

2. Error Assessment and Estimation

Figure 1 shows two sketches showing convergence of a typical aerodynamic output  (CL, CD, etc.) with 
mesh refinement. In the sketch at  the left  of figure 1, E is the total error in this output due to 
discretization-error in the numerical solution. This error is defined as the difference between the exact 
functional value, J, and the value obtained when 
evaluating this functional using the discrete so-
lution on the current  mesh, J(UH). Rather than 
attempt to compute E directly, we follow the 
approach of Ref. [16], and consider instead the 
simpler problem of estimating how our discrete 
evaluation J(UH) would change if we solved on 
a finer mesh, h. The relative error, e, is 
sketched at the right  of figure 1, and is defined 
as the difference between the functional evalua-
tions on the current mesh, H, and the finer, em-
bedded mesh h.

  e = | J(UH) – J(Uh) | (1)

For a second-order method on a sufficiently 
smooth solution in the asymptotic range, knowing the relative error gives the total error in the output. 

 E = e+
1
4

e+
1
42 e+ · · · =

4
3

e  (2)

Of course, knowledge of the relative error hinges on our ability to evaluate the functional on the fine 
mesh solution, J(Uh). In [12] and [14] we circumvent this difficulty by approximating the output on 
the embedded mesh as a function of the coarse mesh flow and adjoint solutions.

 

resulting in a system of equations
R(QH) = 0 (2)

The flux-vector splitting approach of van Leer20 is used. The mesh is viewed as an unstructured collection of
control volumes, which makes this approach well-suited for solution-adaptive mesh refinement. Steady-state
flow solutions are obtained using a five-stage Runge–Kutta scheme with local time stepping, multigrid, and
a domain decomposition scheme for parallel computing; for more details see Aftosmis et al.21,22 and Berger
et al.23

To approximate the functional error |J (Q) − J(QH)|, we consider isotropic refinement of an initial
Cartesian mesh to obtain a finer mesh with average cell size h containing approximately 8N cells (in three
dimensions), and seek to compute the discrete error |J(Qh) − J(QH)| without solving the problem on the
embedded, fine mesh. Our approach follows the work of Venditti and Darmofal,11 where Taylor series
expansions of the functional and residual equations are used on the embedded mesh about the coarse mesh
solution. The result is an estimate of the functional on the embedded mesh, given by

J(Uh) ≈ J(UH
h ) − (ψH

h )T R(UH
h )︸ ︷︷ ︸

Adjoint Correction

− (ψh − ψH
h )T R(UH

h )︸ ︷︷ ︸
Remaining Error

(3)

where QH
h and ψH

h denote a reconstruction of the flow and adjoint variables from the coarse mesh to the
embedded mesh, and the adjoint variables satisfy the following linear system of equations

[
∂R(QH)

∂QH

]T

ψH =
∂J(QH)

∂QH

T

(4)

Ref. 24 gives details on the implementation of the adjoint solver.
Referring to Eq. 3, the adjoint variables provide a correction term that improves the accuracy of the

functional on the coarse mesh, and a remaining error term that is used to form an error-bound estimate
and a localized refinement parameter. A difficulty with the remaining error term is that it depends on the
solution of the adjoint equation on the embedded mesh, ψh. We approximate ψh with an interpolated adjoint
solution from the coarse mesh. A piecewise linear and constant reconstruction is used, so that a computable
approximation to Eq. 3 becomes

J(Qh) ≈ J(QL) − (ψL)T R(QL) − (ψL − ψC)T R(QL) (5)

where the subscript (·)L denotes piecewise linear reconstruction and subscript (·)C denotes a piecewise
constant solution value. Details of this approximation and its performance are presented in Ref. 7. The
advantages of this approach are robustness, especially in regions where the flow and adjoint solutions exhibit
steep gradients and discontinuities, and simplicity of implementation. The disadvantage is a reduction in
accuracy of the adjoint correction and remaining error terms. The remaining error term in Eq. 5 is used to
estimate a bound on the local error in each cell k of the coarse mesh

ek =
∑ ∣∣∣(ψL − ψC)T R(QL)

∣∣∣
k

(6)

where the sum is performed over the children of each coarse cell. An estimate of the net functional error E
is the sum of the cell-wise error contributions to the functional

E =
N∑

k=0

ek (7)

Given a user-specified global tolerance TOL for the functional of interest, the termination criterion for the
simulation is satisfied when

E ≤ TOL (8)

To define a local refinement parameter on the coarse mesh, we specify a maximum allowable error level,
t, for each cell by equidistributing the user-specified tolerance over the cells of the coarse mesh

t =
TOL

N
(9)
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Where R( ) is the spatial operator of the Euler solver, ψ, is the discrete adjoint solution and the nota-

tion ( )H
h is used to indicate prolongation from the coarser to finer mesh.

References [12] [13] and [15] contain full details of the implementation, and demonstrate the  order of 
convergence of both the adjoint  correction and the remaining error terms. In the current work, the re-
maining error term in eq.(3) is computed by differencing the linear and quadratic prolongations of the 
adjoint solution. Earlier publications contain detailed verification exercises demonstrating that  this 
formulation achieves its designed mesh-convergence rate for both the adjoint-correction and the 
remaining-error terms.[12,15]

3. Constant Error Database

Populating aerodynamic databases with simulation data requires hundreds/thousands of CFD simulations in-
curring significant processing costs. For this abstract, we’ve limited this expense by running only 2D cases in 
our databases.  Upon acceptance, the two-dimensional examples contained in this abstract will be replaced with 
three-dimensional simulations, and the investigations and conclusions will be modified where appropriate. 
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Figure 1: Convergence of functional J with  mesh refinement 
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As a baseline for investigating the role of 
discretization error in simulation-based aero-
data, we start by computing an aero-database 
to a fixed error-tolerance. Our prototype is 
simply a Mach-α sweep over a NACA 0012 
airfoil. In an effort  to examine discretization-
error and meshing requirements over a wide 
range of physics, our parametric space cov-
ers 12 Mach numbers from low subsonic to 
moderate supersonic at  10 different  angles-
of-attack. Figure 2 illustrates the extent  of 
this Mach-α space with inset  figures (shaded 
by local Mach number) to illustrate flow in 
various regimes.

For this study, the objective function was cho-
sen to be a simple unweighted sum of lift and 
drag on the airfoil. 
 J(UH) = Cl + Cd (4)

To control discretization-error to a fixed value, every cases in the database was run adaptively until 
the estimate of the remaining-error term in eq.(3) was less than 0.008. With the functional in eq.(4), 
this tolerance translates to 80 counts of drag at zero-lift. This tolerance was purposely chosen rela-
tively loose since we hope to be able to achieve it  over a wide range of flow conditions. Figure 3 
shows simulation results for this database through plots of lift, drag and moment  versus alpha for each 
Mach number.

Figure 3: Lift, drag, and quarter-chord pitch-moment for aero-database in figure 2. All cases computed to 
constant-error tolerance of 0.008 on the approximation of the remaining-error in the functional J = CL + CD.
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While figure 3 shows the primary aerodynamic data, figure 4 contains the central results for our cur-
rent investigation of the error landscape. This figure shows quantitative measures of solution quality 
and cost. At  the left of figure 4, we plot the magnitude of the remaining-error term in eq.(3) at each 
Mach number in the database as a function of angle-of-attack. The plot  at  the right shows the number 
of cells required to achieve this error level also as a function of M∞ and α. 

In examining the data in figure 4, the shaded region in the error plot  indicates that  all but one case in 

the database met our error tolerance of 0.008 on the functional J(UH) = Cl + Cd. Moreover, we see that 

Angle-of-attack, ! = {0°, 0.1°, 0.5°, 1°, 2°, 4°, 6°, 8°, 10°, 12°}
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Figure 2: Mach-α wind-space covered by a prototypical  aero-
database showing examples of flow in various flight regimes. 

(12 Mach numbers) x (10 incidence angles) = 120 simulations 
in the database, Mach contours shown for selected cases.
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Figure 4: (Left) Remaining-error and (right) number of cells required for constant-error aero-database. Shaded 
region on left shows all but one simulation met requested error-tolerance of 0.008 on functional J = CL + CD.
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the adaptive scheme controlled discretization-error so that the remaining error in most of the cases is 

clustered in a narrow band from 0.005 to 0.008. The narrowness of this band is a measure of control. 

In examining the cell-counts at the right of figure 4 we immediately note a clear division between the 

supersonic (dashed line) and subsonic (solid line) cases. Most noticeably, the supersonic cases gener-

ally achieved the desired level of error with over an order of magnitude fewer cells. In the subsonic 

regime, the resolution requirements increase with angle-of-attack and are Mach number dependent. 

The division between subsonic and supersonic flow is a direct result of the domain of influence. In 

subsonic flow, error in any cell in the domain can potentially influence the functional. In supersonic 

flow, only cells in a rough diamond shaped zone formed by the bow shock in front and characteristics 

running upstream from the trailing edge in back can possibly affect the simulation (see figs. 9 & 24 in 

[14]). This dramatically limits the problem size in supersonic flow. Moreover, as the Mach number 

increases, this “refinement diamond”  contracts in the cross-flow direction and the cell count drops 

with the area change (volume change in three-dimensions). 

In the transonic regime, resolution requirements are 

driven by the functional’s dependence on the precise 
location of the upper surface shock. As a result, the 
simulations at Mach 0.7 are among the most  cell-
intensive in the database. By Mach 0.9 the shocks are 
attached to the trailing-edge making these cases easy 
by comparison. 

While cell counts in the trans- and supersonic regimes 
are driven by flow physics, near the incompressible 
limit  they are driven by our model of the governing 
equations. These simulations were preformed using 
the compressible form of the governing equations 
without  any low-Mach preconditioning. Near the in-
compressible limit, the pressure coefficient becomes 
independent  of Mach number giving rise to the well-
known 1/M2 incompressible scaling. Figure 5 shows 
isobars in the discrete solution for the three lowest 
Mach numbers. Isobar levels at M∞ of 0.1, 0.2 and 0.3 
have been chosen to illustrate the approach to self-
similarity in these nearly incompressible flows. Pressure signals at M∞ = 0.1 are 9 times weaker than 
their counterparts at  M∞ = 0.3 in accordance with the inverse Mach-squared scaling. This represents 
nearly a 10 fold decrease in signal strength and therefore meeting the same error-tolerance requires 
substantially higher mesh resolution. This stiffness is simply an artifact  of solving the un-
preconditioned governing equations, and similar issues arise very near unit freestream Mach numbers.

4. Constant Mesh Database

Figures 6 shows a view of the computational mesh used in a database computed on a fixed computa-
tional mesh with ~7000 control volumes. This fixed-mesh database used the same computational mesh  
for all 120 simulations in the database. This represents the standard approach for constructing aerody-

M! = 0.1! = 4°

M! = 0.2

M! = 0.3

"p = 0.0001

"p = 0.0004

"p = 0.0009

Isobars

Figure 5: Final meshes and isobars of selected 
discrete solutions meeting constant error-tolerance 
on functional J = CL + CD in near-incompressible 
flow. 

Figure 6: Computational mesh with ~7000 cells 
used for all cases in the fixed-mesh database.

Figure 7: Drag in database computed on fixed-mesh. Inset 
shows poor prediction of drag at low Mach near α = 0.

D
ra

g
, 
C
d
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14

C
L
if
t

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

Mach 0.1
Mach 0.2
Mach 0.3
Mach 0.5
Mach 0.7
Mach 0.9
Mach 1.1
Mach 1.2
Mach 1.4
Mach 1.6
Mach 2.0
Mach 3.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  2  4  6  8  10  12  14

C
D

ra
g

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  2  4  6  8  10  12  14

C
m

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

Angle-of-Attack, !

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14

C
L
if
t

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

Mach 0.1
Mach 0.2
Mach 0.3
Mach 0.5
Mach 0.7
Mach 0.9
Mach 1.1
Mach 1.2
Mach 1.4
Mach 1.6
Mach 2.0
Mach 3.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  2  4  6  8  10  12  14

C
D

ra
g

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  2  4  6  8  10  12  14

C
m

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14

C
L

if
t

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

Mach 0.1
Mach 0.2
Mach 0.3
Mach 0.5
Mach 0.7
Mach 0.9
Mach 1.1
Mach 1.2
Mach 1.4
Mach 1.6
Mach 2.0
Mach 3.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  2  4  6  8  10  12  14

C
D

ra
g

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  2  4  6  8  10  12  14

C
m

!(˚)

NACA 0012 Database on Fixed Mesh
All Cases same mesh of 7000 cells

Feb  5, 2009



157

21st International Conference on Parallel Computational Fluid Dynamics

namic databases today. Figure 7 shows the prediction of drag across the entire database as a function 
of angle-of-attack for all Mach numbers. In comparing these results with those in Fig. 3 we notice 
immediately the poor prediction in the subsonic regime at  low incidence angles. Given the earlier dis-
cussion of flow sensitivity in this regime, these results are hardly surprising, but the quantification is 
illustrative. At  low Mach numbers, inviscid flow theory predicts zero drag for this airfoil at  zero lift. 
Instead, Fig.7 shows finite drag at zero lift, with results nicely sorted with the inverse of Mach num-
ber as we approach the incompressible limit.

The zero-lift  drag prediction only hints at  the cor-
ruption of this data due to discretization-error. For a 
fuller understanding, adjoint-based error-estimates 
were computed for all simulations using the meth-
ods outlined earlier, but with mesh adaptation turned 
off. Figure 8 shows the error remaining in the output 
functional across the fixed-mesh data for all Mach 
numbers as a function of incidence angle. Error in 
the database ranges from 0.002 to 0.08 – approxi-
mately 1.5 orders of magnitude. Not surprisingly, 
these data correlate quite closely with the resolu-
tion requirements shown at  the right  of figure 4. 
The failure of this mesh to meet  these resolution 
requirements manifests itself as simulation error.

The final paper will include a relative-error database and examples will focus on three-dimensional 
aero-data to ensure relevance to problems of practical engineering interest.
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Figure 8: Remaining error in fixed-mesh database. 
Shaded region shows cases achieving error-tolerance 
of 0.008 on functional J = CL + CD.
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A hybrid CPU/GPU parallel algorithm for coupled Eulerian and Vortex 
Particle Methods 
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Abstract: A combined CPU/GPU parallel algorithm for a hybrid Eulerian/Lagrangian CFD 
method is presented. Specifically, the optimized multi-GPU algorithm for direct Biot-Savart 
particle-particle interactions, associated with Vortex Particle Methods, is described in detail. 
The particle integration algorithm is implemented using multiple general purpose graphics 
processing units (GPU's) via NVIDIA's Compute Unified Device Architecture (CUDA). 
Details of the CUDA algorithm and the Eulerian/Lagrangian coupling method are described. 
Benchmark performance results for the Biot-Savart induction operation for velocity and 
velocity-gradient are presented. 
Keywords: Vortex Particle Method, N-body problem, GPU, CUDA.

 

1. INTRODUCTION 

The present algorithm couples an Eulerian CFD code, OVERFLOW-2, with the Vortex Particle Method (VPM). 
This coupled modeling method is intended for a rotorcraft simulation environment, specifically involving rotor-
wake interactions. This type of simulation requires high fidelity modelling of the tip and wake vortex structures 
generated by the rotor blades and long term capture of these structures downstream. OVERFLOW-2 [1] is an 
unsteady, overset RANS algorithm that has been extensively employed for rotorcraft [2,3] and similar environments. 
However, as with all finite-difference methods, this algorithm is overly dissipative (i.e., not truly inviscid). Vortex 
Particle Methods (VPM) [4] solve the vorticity transport equation using discrete Lagrangian elements. Each of these 
elements contains a specific vectoral circulation or vortex strength. Their advection, numerically implemented as 
particle trajectories, replaces the non-linear terms encountered in discretized Eulerian methods. As such, they can 
convect vorticity without any intrinsic numerical dissipation making them well suited for wake simulations. Further, 
they are able to model sparse domains efficiently by only applying vortex elements were needed. To reduce the 
wake modelling cost and increase fidelity, Large Eddy Simulations (LES) methods can be applied within the VPM 
framework [5]. The combination of these two methods, OVERFLOW-2 in the near-field and VPM in the wake, is a 
logical compromise leveraging the other’s strengths. Details of the coupling algorithm are briefly given in the 
following section. The primary focus of this paper is the performance acceleration for the VPM method using a 
hybrid CPU/GPU algorithm. 

Central to Lagrangian vortex particle methods, the Biot-Savart induction operation is used to compute the velocity 
and velocity-gradient on individual particles. For a single particle, the discreet induction is a sum of the influences 
of all other particles. For a set of n non-singular particles with vectoral strengths (ββββ) and smoothing radii (σ), the 
induction for velocity at a discreet position (x) can be written in pseudo-tensor form as: 

    =  − 
 ∑      

        (1) 

where r = (x – y) is the particle separation vector, R = |r| is the particle separation distance, and K(γ) = 1 – exp(-γ3) 
is the Gaussian smoothing function. The velocity-gradient tensor is obtained by direct differentiation of (1). 

Evident from (1), the total number of particle-particle interactions for n particles is n2 (i.e., quadratic). From 
symmetry, the number of interactions can be reduced by a factor of two for uniform or constant support radii (σ). A 
quick examination of the algorithm reveals n independent summations which can operate concurrently in parallel. 
That is, given n processing elements (PE), the Biot-Savart induction could operate in linear time, i.e., O(n). 
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Common VPM simulations employ 105-107 particles; therefore, this is not realizable even for massive computational 
clusters due to size constraints and communication bottlenecks. In general, the direct summation method is not 
employed due to the quadratic complexity. Instead, most algorithms rely upon hierarchal tree methods [6], fast 
multipole methods (FMM) [7] or, most commonly, a hybridization [8] of the two with complexities of O(n log n) or 
better. (The complexity of FMM is formally O(n); however, benefit is typically only realized for large n due to the 
high operation count per element.) 

The alternative method implemented here employs commodity graphics processing units (GPU's) in parallel. 
Specifically, we employ NVIDIA's Compute Unified Device Architecture [9] (CUDA) multi-threaded design 
supporting their Single Instruction Multiple Thread (SIMT) paradigm. CUDA defines an extended instruction set 
within standard C to support SIMT. The CUDA-enabled product line from NVIDIA offers fine-grained data 
parallelism through a hierarchal multiprocessor and multi-core design. These devices are designed around one or 
more Streaming Multiprocessors (SM's), (e.g., 14 SM's for the GT 9800 and 30 for the Tesla C1060). Each SM in 
turn contains eight Scalar Processors (SP's) along with local on-chip shared-memory (currently 16 kilobytes). All 
PE's have access to the global memory at high bandwidth. Threads are scheduled rapidly via a hardware-based, 
zero-overhead thread workload manager on each SM. 

Within CUDA, kernels are defined which operate independently upon an assigned data space. Parallelism is implicit 
to the kernels, i.e. each thread executes the kernel concurrently. To hide latency on the device, many thread kernels 
are launched and the hardware-based workload manager optimizes the throughput. The number of threads is often 
limited by available on-chip memory, not the workload. To take advantage of the processing and memory hierarchy 
of the device, threads are created in fixed-size blocks, e.g. 64 threads per block. Loads and stores from global 
memory are optimized for the thread block. That is, if each thread within a block issues a load for a successive array 
element simultaneously, the transaction is coalesced into a single per-block load instruction as opposed to multiple, 
repeated individual requests per-thread. (This does not imply the coalesced load completes in a single instruction.) 
Therefore, it is advantageous to keep the block threads synchronized when loads and stores from global memory is 
required. Synchronization between the threads within a specific block is achieved through a hardware instruction 
allowing efficient fine-grained parallelism. 

As detailed previously, direct evaluation of (1) is very amendable to fine-grained parallelization available on 
CUDA-enabled GPU's.  Examples of successful gravitational N-body problems on CUDA GPU's can be found in 
[12]. Details of the current Biot-Savart implementation in single and multiple GPU environments are presented in 
subsequent sections. Implications of GPU memory access patterns on throughput as well as scalability in a 
distributed heterogeneous environment are reported.  

2. NUMERICAL ALGORITHM 

The salient features of the parallel coupling OVERFLOW-2 with the VPM algorithm will be briefly outlined here. 
Details of OVERFLOW-2 can be found in the previously cited literature. Particles are seeded within the 
OVERFLOW-2 domain on a user-specified seed grid at points with positive (outward) vorticity flux. Particles 
advect through the OVERFLOW-2 domain using interpolation to determine velocity. These particles are labeled 
passive. Once particles exit the OVERFLOW-2 domain, they become active and both velocity and velocity-gradient 
are evaluated via (1). The induction on active particles includes both passive and active. In this manner, information 
from within the OVERFLOW-2 domain can be transmitted to the VPM domain in a manner similar to overset grid 
methods. Overlap of the two domains is used to maintain continuity. 

The VPM component of the coupled algorithm for a single timestep is as follows: 

a) Seed new vortex particles upon specified grid at locations with outward vorticity flux. Vorticity is 
computed through finite-difference on the seed grid using velocity at time tn. 

b) Redistribute the particle field to a uniform spacing to maintain algorithm accuracy using a 4th-order 
Lagrangian interpolation function. 

c) Identify particles as passive if residing within the OVERFLOW-2 grid domain. Otherwise, particles are 
labeled as active. A search algorithm similar to those used in overset grid methods locates the best available 
donor cell for a passive particle. 

d) Sort the particle list packing all passive particles in an optimized order according to donor grid. Active
particles are appending after all passive particles. 
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e) Integrate the particles through the specified timestep δt using either a two-stage Runge-Kutta or two-level 
Adams-Bashford method. Active particles directly compute velocity and velocity-gradient via (1). Velocity 
and vorticity strength for passive particles are acquired through interpolation from local donor cells with a 
tri-linear algorithm using velocity at time tn. 

f) Compute velocity on double fringe OVERFLOW-2 boundary points through (1) using all particles. 
Freestream (potential) flow is superimposed upon the induced velocity. This sets the updated velocity 
boundary condition using by OVERFLOW-2 to integrate from time tn to t = tn + δt. 

In the final step shown above, pressure and density are currently assumed constant, which is non-rigorous. This is a 
difficulty with coupling incompressible VPM with compressible RANS algorithms. Work is underway to add a full 
potential equation (FPE) algorithm to the coupling process. Inclusion of the full velocity potential in the background 
field will allow compressibility effects and, therefore, a proper evaluation of boundary conditions for OVERFLOW. 

2.1 Biot-Savart CUDA algorithm 
The evaluation of (1) at a given location requires the position (x) and vectoral strength (ββββ) for all particles. For non-
singular methods the particle radius (σ) is required. Depending upon the application, σ can be assumed constant. On 
output, the induction returns the velocity and velocity-gradient. Therefore, the position, strength, and radius are sent 
to and the velocity/velocity-gradient retrieved from the GPU's main (global) memory via CUDA data transmission 
routines. 

The current Biot-Savart CUDA implementation assigns one target thread per particle. The thread block size is 
variable from 32 to 128 with 64 generally yielding the optimal performance. On-chip memory limitations prevent 
larger block sizes. Multiple (100's to 1000's) thread blocks are spawned concurrently and scheduled by the manager. 
As noted, each thread operates on a unique target particle and initializes all elements of the solution data structure 
(containing velocity and velocity-gradient) to zero. Once initialized, the thread enters the main particle-interaction 
loop. A straightforward implementation loops over all particle positions one-by-one loading from global memory. 
The pseudo-code is shown below: 

1 myIdx = blockIdx * blockDim + threadIdx;

2 Velocity[myIdx] = 0; Gradient[myIdx] = 0;

3 for k = 1, NumberOfSourceParticles

4       Velocity[myIdx] += F( Position[k], Strength[k], targetPosition[myIdx], σ );

5       Gradient[myIdx] += G( Position[k], Strength[k], targetPosition[myIdx], σ );

6 end

Code 1. Naive CUDA N-body algorithm.

Here, myIdx is a unique global index, a function of the block size (blockDim), block index (blockIdx) and local 
thread index (threadIdx). Note, the symbols blockDim, blockIdx and threadIdx are reserved in CUDA and are 
defined externally upon entry to the kernel. The arrays Velocity[], Gradient[], Position[] and Strength[] are hold 
velocity, velocity-gradient tensor, position and vectoral strength with implied data-types and assignments operators. 
F(...) and G(...) are functional implementations of (1) for a single particle-particle interaction. While algorithmically 
simple and correct, the above algorithm would suffer severely from memory latency during the repeated loads and 
stores from global memory. Further, CUDA does not cache global memory operations, compounding the limited 
global memory bandwidth. In total, each thread would issue, at a minimum, two global loads and two stores per 
iteration. Performance results using this and subsequent CUDA algorithms are presented later. 

To optimize the algorithm, the stride in the above example is increased to match the thread block size (blockDim). 
At the beginning of each iteration, all threads concurrently load a coalesced set of particle positions and strengths 
from global memory to a pre-allocated shared-memory segment. As discussed earlier, on-chip shared-memory reads 
and writes are highly optimized (near register speed). Once all sibling threads (i.e., those in the same thread block) 
have loaded their assigned data, insured by a synchronization barrier instruction, all may proceed concurrently with 
the blockDim particle-particle interactions. Further, the position vector of the current thread index is loaded from 
global memory and velocity and velocity-gradient are declared locally to avoid non-local stores. This is shown in the 
following pseudo-code: 
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1 myIdx = blockIdx * blockDim + threadIdx;

2 myPos = targetPosition[myIdx]; myVel = 0; myUij = 0;

3 for k = 1, NumberOfSourceParticles, blockDim

4      sharedPosition[threadIdx] = Position[(k-1)*blockDim+threadIdx];

5      sharedStrength[threadIdx] = Strength[(k-1)*blockDim+threadIdx];

6      Synchronize Threads();

7      for n = 1, blockDim

8           myVel += F( sharedPosition[n], sharedStrength[n], myPos, σ );

9           myUij += G( sharedPosition[n], sharedStrength[n], myPos, σ );
10      end

11     Synchronize Threads();

12 end

Code 2. Tiled CUDA N-body algorithm. 

By pre-loading a coalesced segment of global memory into shared-memory, the inner loop can proceed without any 
bottlenecks. Here, all data referenced by the kernel functions F(...) and G(...) resides in shared-memory and may 
proceed at peak throughput. This method, commonly referred to as tiled [10], has similarities to block matrix 
operations. In the tiled algorithm, each thread only issues 2n / blockDim loads in total; and, these loads will be at a 
much higher bandwidth since the concurrent request will be coalesced into a single fetch. Each thread pre-loads its 
target position to alleviate a non-aligned or random fetch further increasing the realized load bandwidth. 

Finally, multiple CUDA GPU's are supported in this implementation by a simple divide and conquer method. 
Multiple parallel threads (pthreads) are assigned exclusive access to the available GPU's within a single compute 
node. For distributed environments, this same method is be employed by assigning one MPI process per node. This 
provides for a coarse-grained approached whereby the particle information must be explicitly transmitted between 
distinct memory systems. The current MPI implementation requires that the entire particle field be stored within 
each process, allowing the above algorithms to be easily extended to this environment. 

3.  PERFORMANCE 

A brief set of experiments was conducted to assess the performance of the various CUDA algorithms. The tests were 
conducted on the Lincoln system at the National Center for Supercomputing Applications (NCSA). A subset of this 
system is designed for hybrid, multi-grained CPU/GPU algorithms: each node contains two NVIDIA Tesla C1060 
GPU's and two quad-core (2.33 GHz) Intel E5345 CPU sockets. This multi-level design allows for a variety of 
distributed and shared-memory algorithms using both CPU and GPU methods. An instantaneous particle field result 
from a coupled OVERFLOW/VPM rotorcraft hover simulation will be used for all subsequent benchmarks. The 
particle field consists of 258,357 active and 232,920 passive particles (or, 258,357 targets with 491,277 sources).

A baseline experiment was first conducted using a parallel CPU-only algorithm. Here, (1) was implemented in 
parallel using OpenMP and run using all eight cores on a single node. This CPU-only version achieved 202 million 
particle-particle interactions per second (ints). Note, the number of particle-particle interactions in the present 
benchmark is 127 billion: requiring greater than 10 minutes for a single evaluation. This and all subsequent 
benchmarks have been tabulated in Table (1). 

The naive algorithm was tested on one NVIDIA Tesla C1060 GPU. This resulted in a peak throughput of 114 
million ints, only 56% of the CPU-only performance. As expected, direct loads and stores from GPU global memory 
results in poor performance. The tiled algorithm resulted in 5,976 million ints: a factor of 51.8x improvement over 
the naive code and 29.3x over the multi-threaded CPU version. 

A final single-GPU experiment was conducted merging the two methods. Here, the target position, velocity, and 
velocity-gradient are locally declared but source position and vectoral strength are loaded directly from global 
memory. The resulting throughput decreased by only 1% compared to the original tiled method. The high 
performance resulting from this simplistic method can be attributed to the high computational intensity (CI) of the 
Biot-Savart induction operation and, secondly, to locally storing the target position and intermediate results during 
the induction loop. 
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Table 1. Biot-Savart benchmark results using multi-threaded (OpenMP) CPU, single GPU and 
multiple GPU algorithms. Throughput is given as million particle-particle interactions per second. 
Speed-up is relative to 8-core OpenMP CPU-only throughput.

Description Throughput (million ints) Speed-up 
8-core OpenMP CPU version 202 N/A 
1 GPU using naive code 114 0.56 
1 GPU with tiled code 5,976 29.3 
2 GPU's with 2 controlling threads 10,584 52.4 
4 GPU's using MPI and pthreads 21,820 108 
8 GPU's using MPI and pthreads 40,842 202 

The scalability of the multiple GPU's has also been evaluated. As previously discussed, we allocate one MPI process 
per node and partition the available GPU's to multiple threads. For one, two and four nodes, the multi-level parallel 
method yielded 10.58, 21.82, and 40.84 billion ints, respectively, with linear scalability.

4. CONCLUSIONS 

A hybrid CPU/GPU algorithm for direct Biot-Savart particle-particle interaction calculations within the Vortex 
Particle Method is presented. The algorithm employs multiple levels of parallelism to achieve near-optimal 
throughput. The GPU algorithm uses NVIDIA's Single Instruction, Multiple Thread paradigm implemented with 
CUDA to exploit fine-grained parallelism. A combined MPI and pthread CPU algorithm is utilized to manage 
distributed memory systems with multiple GPU's per node. Assuming the reported linear scalability is maintained, a 
500,000 source/target particle simulation could be completed in less than 3 seconds per timestep with just 16 nodes. 
This high computational throughput offers a tractable cost when employing a direct summation method. 
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      _____________________________________________________________________________ 

       Abstract: The effect of active flow control (AFC), using oscillatory blowing (synthetic jets) and steady 
suction/blowing on drag reduction of cars/trucks is numerically studied using the Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations. Two generic models of trucks for which the experimental 
data are available are considered in the simulations. CFD simulations are in good agreement with the 
data. Both the experiments and simulations show that 10 to 15% reduction in drag can be achieved by 
active flow control using oscillatory blowing. A combination of oscillatory blowing and steady blowing 
or suction at appropriate locations on the rear face of the truck can further reduce the drag. These studies 
indicate that the AFC techniques can be employed to achieve substantial drag reduction.   
____________________________________________________________________________________ 

1.  INTRODUCTION 

Almost all road vehicles – cars and trucks are bluff bodies. Therefore their aerodynamic drag is dominated by the 
pressure drag due to the flow separation at the rear end of the body. Furthermore, the wake of the body is unsteady, 
turbulent and three-dimensional due to continuous shedding of the vortices. The worldwide usage of ground vehicles 
is very extensive for transport of passengers and goods and it accounts for over 30% of CO2 and other greenhouse 
gas (GHG) emissions. Therefore reducing the drag of these vehicles can make a major contribution to reduction in 
fuel consumption and GHG emissions. In recent years, a number of experimental and numerical studies have been 
conducted to explore the potential of drag reduction using AFC. Many of these studies have been conducted on 
Ahmed body [1] and other generic car/truck shapes. In this paper, we conduct numerical drag reduction study on a 
generic truck model used in the experiment of Seifert et al. [2] and on Ahmed body employed in the experimental 
and computational study (using Large Eddy Simulation model) of Wassen and Thiele [3].  

2. CFD FLOW SOLVER 

FLUENT is a commercially available numerical flow solver package, which is employed to compute the flowfields. 
This CFD software package solves the governing equations of incompressible, viscous fluid using a finite-volume 
method. It has several numerical algorithms for both steady and unsteady flow calculations on structured as well as 
unstructured grids. The software also has several zero-, one-, and two-equation turbulence models. “GAMBIT” is 
the pre-processing grid generation software that is provided with the FLUENT package; it is used to create the 
geometry as well as to generate the appropriate structured or unstructured meshes. In our calculations, we employ 
structured adaptive mesh on 2-D models and solve the URANS equations in conjunction with a two equation 
realizable k-ε model.  The second-order upwind solver in FLUENT 6.2.16 is employed for the solution of the 
momentum equations. Pressure-velocity coupling in incompressible flow is solved using the Pressure-Implicit with 
Splitting of Operators (PISO) scheme, and the pressure is computed using the standard Poisson solver.  

3. COMPUTED RESULTS 

3.1 Computed Flow Field and Drag for a Generic Truck Model [2] without and with AFC 
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We consider the flow past a generic truck model used in the experiments of Seifert et al. [2].The geometry of the 
model is shown in Figure 1. Figure 2 shows the original mesh and Figure 3 shows the final adaptive mesh. 

 

Figure 1: Generic Truck Model [2] 

 

 

 

 

  

 

 

      Figure 2: The mesh before adaptation 

 

 

 

 

 

 

 

 

Figure 3: Final mesh after adaptation 
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Computations were performed at free-stream velocities of 10 m/s, 20 m/s, and 30 m/s used in the experiments of 
Seifert et al. [2]. The optimal adaptive mesh shown in Figure 3 with a second-order solver and k-ε model gave the 
best results within ±5% of the experimental values at all the three Reynolds numbers (3.08x105, 6.1x105 and 
9.24x105 corresponding to free-stream velocities of 10 m/s, 20m/s and 30 m/s respectively). Figure 4 shows the 
comparison between the experimental and computed values of drag coefficient for three Reynolds numbers. The 
error bars on the graph are within the ±5% range. It is important to note that the computed drag coefficient decreases 
as the Reynolds number increases as expected from physical considerations; however this trend is not observed in 
the experimental data and has not been possible to diagnose.  

 

 Figure 4: Variation of drag coefficient with Reynolds number; Blue: Experimental data, Red: Computations 

Figure 5 shows the velocity contours in the flow field at a free-stream velocity of 10m/s or a Reynolds number Re = 
3.08x105. 

  

 

 

 

                     Figure 5:  Velocity contours at a free-stream velocity of 10 m/s; Re = 3.08x105 

                        Figure 5:  Velocity contours for flow past the truck at a free-stream velocity of 10 m/s; Re = 3.08x105 
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After calculating the drag coefficient for three Reynolds numbers as shown in Figure 4, computations were 
performed with synthetic jets placed near the upper and lower corner at the rear of the truck. The amplitude of the 
synthetic jet velocity was taken to be half of the free-stream velocity. The frequency was 100Hz and the jet width 
was 1.7mm. As shown in Table 1, 8.94%, 13.41% and 15.62% reduction in drag (compared to baseline shown in 
Figure 4) was calculated for free-stream velocities of 10m/s, 20m/s and 30m/s respectively. These reductions 
represent major decrease in the aerodynamic drag of the generic truck model due to AFC. Figure 6 shows the 
variation of drag coefficient with Reynolds number without and with AFC. The results presented in this section 
clearly demonstrate the effectiveness of active flow control using synthetic jets in reducing drag of a truck. 

 

      

      Figure 6: Variation of drag coefficient with Reynolds number without and with flow control using synthetic jets  

3.2 Computed Flow Field and Drag of the 3D Ahmed Body [1, 3] without and with AFC 

In Reference 3, both experimental and computational drag reduction studies on the 3D Ahmed car body, shown 
in Figure 7, were performed using steady blowing. Computational studies were performed using the Large Eddy 
Simulation model. A 6.4% reduction in drag coefficient was computed using the steady blowing from the upper 

Table1: Computed drag coefficient ( Cd ) without and with AFC; A = Jet amplitude, f = frequency, b = jet width 
U = free-stream velocity 

Free-stream 
Velocity 
(m/s) 

Reynolds 
Number 

Experimental 
value of Cd 

Computed Cd 
without AFC 

Computed  Cd with AFC  
A=.5*U, f=100Hz, b = 
1.7mm 

% Change in Cd  
with AFC 

10 3.08E+05 0.98 1.04464442 0.9512261 -8.942595032 
20 6.16E+05 0.98 0.99310098 0.859955849 -13.40700832 
30 9.24E+05 1.02 0.977520171 0.824850755 -15.6180323 
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slanted surface. The baseline Cd0 was 0.374 and the Cd with steady blowing was 0.350 for a free stream velocity 
of 7m/s. We have performed 3D computations using URANS equations with a k-ε model. We have computed 
the Cd0 without AFC as 0.370 and Cd with steady blowing as 0.348. Our results with URANS are in excellent 
agreement with LES results reported in Reference 3. Computations have also been performed with a synthetic 
jet placed on the slant surface and another placed at the bottom corner. These computations show a further 
reduction in drag with a Cd  of 0.322.

                                                Figure 7: Geometry and dimensions of the Ahmed body [3] 

4. CONCLUSIONS 

The computational results presented in this paper clearly demonstrate that a significant reduction in drag (10 to 15 
%) of truck like bodies can be achieved using active flow control with steady and/or oscillatory blowing. Computed 
results agree with the experimental data within 5%. 
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Abstract: This study discusses details regarding our implementation of an overset mesh 

package into our parallel compressible flow code, CaMEL Aero for complex and moving body 

problems. The flow code is based on cell-centered finite volume formulation of the 

conservative Navier-Stokes equations using hybrid unstructured mesh topology with Detached 

Eddy Simulation for the turbulence modeling. We implemented SUGGAR/DiRTlib package 

for the overset mesh processing and operations. We tested our implementation with flow 

problem around a projectile. Parallel performance of our flow solver with overset on our 

parallel clusters is presented. Comparison with available experimental results will also be 

demonstrated. We will evaluate overall performance of the parallel overset capability as well. 

Keywords: overset mesh, finite volume, parallel computing, compressible flow. 

 

INTRODUCTION 

Overset grid methodology is one of the highly demanded technologies for the numerical solution of the flows 

involving complex geometries and moving bodies. As the flow problems gets complicated more sophisticated 

approaches are required to handle challenges regarding mesh processing and operations. Over the year several 

overset grid tools have been developed by various research groups: SUGGAR/DiRTlib[1,2], PUNDIT[3], 

OVERFLOW-2DC[4,5], CHIMPS[6], BEGGAR[7], FASTRAN[8], Overture[9], and FVM[10]. All of these tools 

were developed to work with certain type of flow solvers therefore come with some deficiencies rather that being a 

general purpose overset tool. However, some of them are more versatile and practical than others. Most of the 

overset grid related tasks such as hole cutting, searching, blanking, communicate, and update etc are done with the 

minimum user-provided parameters hence reducing overall efforts to integrate it into different flow solvers. With all 

these nice practical features, however, one big challenge still lies ahead for highly complex and moving body flow 

problems on peta-scale parallel computing environment: whether scalability of the original parallel flow solver can 

be maintained.  

In this study, we implemented Chimera overset capability, SUGGAR/DiRTlib package, into our compressible 

parallel flow code, CaMEL Aero [11,12], to solve flow problems involving moving objects or domains. The flow 

solver, CaMEL (Computation and Modeling Engineering Laboratory) Aero, is based on cell-centered finite volume 

formulation of the conservative Navier-Stokes equations using hybrid unstructured mesh topology with Detached 

Eddy Simulation (DES) for the turbulence modeling. The flow solver itself has been validated for various sets of 

complex flow problems in the past research studies. Suggar/DiRTlib provides an upper level library approach to 

tackle with the overset mesh implementation hence reducing most of the burden of overset mesh implementation. 

However, CFD developers still need significant time for the implementation of this overset tool without direct 

support from the developers of the tool package. 

In the following sections, we will describe our overset implementation and an application to a compressible flow 

problem. Besides just implanting the overset tool into the flow solver, we need some pre- and post processing 

operations depending on the type of the mesh data format the solvers use since it has limited support for different 

mesh data formats. The problem we will solve for the demonstration of the capability is a projectile case at transonic 

to supersonic flow regimes with different roll rates and angles of attacks. We will compare our results against the 

experimental result [13] and other flow solutions. We will use static overset mesh methodology to solve this 
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problem then, we will introduce some oscillations to demonstrate dynamic overset mesh capability. Dynamic 

overset modeling involves unsteady simulations thus requires longer computational time due to cost of the overset 

mesh calculations at every time steps. Turbulence effect will be modeled using DES in all our simulations. 

 

OVERSET IMPLEMENTATION INTO CAMEL AERO 

In our overset grid implementation, SUGGAR handles overset grid assembly process and generates domain 

connectivity information (DCI file) that is needed for the exchange of the data among the overset mesh blocks. DCI 

file contains pairs of donor and fringe/receiver cells/nodes for the interpolation between mesh blocks, weights of 

interpolation for cells/node, blanked out cells and some other parameters specific to the grids. All mesh blocks are 

combined into one single block for the flow solver. However, SUGGAR can accept them separately and use a 

hierarchical block relationship. SUGGAR can run as a separate batch process or can be linked to the flow solver. For 

static overset, one without any mesh block moving, SUGGAR can be run only once at the beginning to generate 

DCI file. However, for moving body problems it should be run every time step to move the mesh accordingly as in 

the flow solver. It can run with multi-thread option to give better timing. DCi file generated by SUGGAR is used by 

DiRTlib. It as a library and therefore linked to the CaMEL flow solver. DiRTlib has several function calls to manage 

retrieving the DCI file, communicate between overlapping blocks, and update of solutions on the overlapped mesh 

elements. For static overset problems, DiRTlib implementation into CaMEL Aero is very clean. There is an 

initialization at the beginning and then flow solution update calls at each non-linear iteration for each time step.  For 

mowing body problems overset related initialization should be done every time step. 

In parallel case, DiRTlib needs block partition information additionally. Block partitioning is already in our flow 

solver generated by using ParMetis [14] library. Therefore, it is transferred to DiRTlib within the solver by a using 

DiRTlib function call. While DiRTlib uses the same parallel processes synchronously as the flow solver, in parallel 

run cases, SUGGAR runs as one process only. This would create bottleneck in the parallel efficiency, however it can 

be avoided if prescribed motion is applicable to the particular problem. In prescribed motion case, the domain 

connectivity information is a-priori computed by SUGGAR and saved in files for each time step in the simulation.  

Then, the flow solver simply loads this file for each time step. Though one can argue that this would hide the real 

cost affect of the overset mesh into parallel efficiency, it could also be perceived as mesh pre-processing. For 

moving body problems there will be more overhead to the total timing of the simulation. 

 

TEST CASE AND RESULTS 

We run a simulation for a projectile test case [13] using our parallel flow solver, CaMEL Aero, with the overset 

capability on one of our parallel clusters, one with 80 cores of Intel Xeon, 3.0 GHz, and 32GB memory per node. 

Initial speedup and efficiency results with the overset component up to 64 cores are presented in Figure 1. Note that 

timing cost for the overset part includes only DiRTlib contribution, not that of SUGGAR contribution for this 

particular case. DiRTlib time includes reading DCI file, all updates, and communication needed dues to overset 

mesh only. SUGGAR time includes time to generate domain connectivity file needed for solution update by 

DiRTlib. We will also study timing cost of running SUGGAR at different run modes as well as with different input 

parameters.  

Current projectile solution involves two original mesh blocks: one surrounds the projectile and the other is bigger 

than projectile and covers projectile mesh. Current run is at Mach number 1.5 and zero degrees of angle of attack, 

AoA, without spinning. A coarse mesh with five million hybrid cells of hexahedra, prism, pyramid, and tetrahedron 

was generated. We will generate a much bigger mesh and do parallel performance study with that problem in our 

clusters. Validation of the overset implementation will include ranges of Mach number from supersonic Mach 

numbers up to 4.5 and AoA from 0 to 5 degrees. Figure 2 shows contours of pressure and mesh partitioning for 12 

blocks. Timing breakdown of CaMEL Aero with overset module is given in Table 1. Note that overset time due to 

DiRTlib calls is constant, therefore percentage value increases as we increase number of processors. 
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Figure 1: Parallel performance of CaMEL Aero with SUGGAR/DiRTlib for projectile case on the NGC Linux 

cluster. Flow solution is unsteady viscous with DES turbulence approximation and without moving. Timing includes 

DiRTlib time only. SUGGAR time is not included since the mesh is not moved in this case. Average timing 

breakdown: N-S Equations=68%, Turbulence=22%, Communication=6%, and Overset (DiRTlib only)=4%  

 

 

  

Figure 2: On the left: Presure contours of projectile test case at Mach 1.5 by CaMEL Aero code. Note that 

rectangular boundary denotes boundary of mesh blocks aroun the projectile. On the right: Partitioning of the 

combined mesh blocks for 12 processors showing continuationof the partitioning boundary through overset mesh 

boundary.   
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Table 1: Timing breakdown of CaMEL Aero with overset module (DiRTlib only) for different number of processors. 

SUGGAR wall time took 67 seconds and run as separate once at the beginning of the time integration. 

# of cores Total Time (sec/time step) N-S solver (%) Turbulence (%) Communication (%) Overset (%) 

8 74 73 25 0.6 1.1 

16 36 71 23 2.9 2.1 

24 23 70 23 4.1 2.3 

32 17 70 22 4.8 2.9 

40 14 68 21 6.3 3.7 

48 11 66 21 7.9 4.0 

56 10 63 22 9.2 5.1 

64 9 61 20 9.1 8.6 

 

CONCLUSION 

We have successfully implemented SUGGAR/DiRTlib overset mesh package into our CaMEL Aero compressible 

flow solver and demonstrated the applicability of it for flow problem around a projectile. This implementation took 

much less time than one can expect from developing the similar capability starting from scratch for this particular 

flow solver. However, we can conclude that more familiar with flow solver and overset methodology much shorter 

the implementation time. The overset function calls are kept at minimum so that less modification to the flow solver 

possible. The major bottleneck with this overset package appears as not be able to run SUGGAR in parallel the same 

way flow solver does. However, there are remedies to avoid this particular overhead depending on the nature of the 

problem and motion of the object. Parallel efficiency for this size of the problem is very promising as overset related 

updates and communications does not contribute significantly to the overall all timing cost of the problem.  
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With the availability of large-scale multicore processor based clusters,
the different software models for parallel programming require a fresh
assessment. For physically distributed memory machines, the message
passing interface (MPI) has been a natural and very successful software
model. For another category of machines with distributed shared memory
and nonuniform memory access, both MPI and OpenMP have been used
with respectable parallel scalability. However, for clusters with several
multicore processors on a single node, the hybrid programming model
with threads within a node (OpenMP being a special case of threads
because of the potential for highly efficient handling of the threads and
memory by the compiler) and MPI among the nodes seems natural [1].

Two extremes of execution on hybrid architectures are often employed,
due to their programming simplicity. At one extreme is the scenario in
which the user explicitly manages the memory updates among differ-
ent processes by making explicit calls to update the values in the ghost
regions. This is typically done by using MPI, but can also be imple-
mented with OpenMP. The advantage of this approach is good perfor-
mance and excellent scalability since network transactions can be per-
formed at large granularity. When the user explicitly manages the memory
updates, OpenMP can potentially offer the benefit of lower communica-
tion latencies by avoiding some extraneous copies and synchronizations
introduced by the MPI implementation. The other extreme is the case
in which the system manages updates among different threads (or pro-
cesses), e.g., the shared memory model with OpenMP. Here the term
“system” refers to the hardware or the operating system, but most com-
monly a combination of the two. The advantages are the ease of program-
ming, possibly lower communication overhead, and no unnecessary copies
since ghost regions are never explicitly used. However, performance and
scalability are open issues. For example, the user may have to employ a
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technique like coloring to create nonoverlapping units of work to get rea-
sonable performance. In the hybrid programming model, some updates
are managed by the user (e.g., via MPI or OpenMP) and the rest by the
system (e.g., via OpenMP).

In this paper, we evaluate the hybrid programming model using mem-
ory performance as a metric in the context of an unstructured implicit
CFD code, PETSc-FUN3D [2]. The performance of many scientific com-
puting codes is dependent on the performance of the memory subsystem,
including the available memory bandwidth, memory latency, number and
sizes of caches, etc. In addition, scheduling of memory transactions can
also play a large role in the performance of a code. Ideally, the load/store
instructions should be issued as early as possible. However, because of
hardware (number of load/store units) or software (poor quality assem-
bly code) limitations, these instructions may be issued significantly late,
when it is not possible to cover their high latency, resulting in poor over-
all performance. OpenMP has the potential of better memory subsystem
performance since it can schedule the threads for better cache locality
or hide the latency of a cache miss. However, if memory bandwidth is
the critical resource, extra threads may only compete with each other,
actually degrading performance relative to one thread.

To achieve high performance, a parallel algorithm needs to effectively
utilize the memory subsystem and minimize the communication volume
and the number of network transactions. These issues gain further im-
portance on modern architectures, where the peak CPU performance is
increasing much more rapidly than the memory or network performance.

In a typical PDE computation, four basic groups of tasks can be identi-
fied, based on the criteria of arithmetic concurrency, communication pat-
terns, and the ratio of operation complexity to data size within the task.
These four distinct groups, present in most implicit codes, are vertex-
based loops, edge-based loops, recurrences, and global reductions. Each
of these groups of tasks stresses a different subsystem of contemporary
high-performance computers. After tuning, linear algebraic recurrences
run at close to the aggregate memory-bandwidth limit on performance,
flux computation loops over edges are bounded either by memory band-
width or instruction scheduling, and parallel efficiency is bounded pri-
marily by slight load imbalances at synchronization points [2].

While implementing the hybrid model, the following three issues should
be considered.

– Cache locality
– Work Division Among Threads
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Table 1. Execution time on IBM BlueGene/P (four 850 MHz cores per node) for
function evaluations only, comparing the performance of distributed memory (MPI
alone) and hybrid (MPI/OpenMP) programming models.

MPI Processes Threads per Node
per Node in Hybrid Mode

Nodes 1 2 4 1 2 4

128 162 92 50 162 84 44
256 92 50 30 92 48 26
512 50 16 17 50 26 14

Table 2. Total number of linear iterations for the case in Table 1.

MPI Processes per Node
Nodes 1 2 4

128 1217 1358 1439
256 1358 1439 1706
512 1439 1706 1906

– Update Management

There are many implementations possible that strike a different bal-
ance of these factors. In Table 1, we present one such implementation for
hybrid model where work is divided among threads in a manual way (as
is done in the pure MPI case). Here, each MPI process calls MeTiS to
further subdivide the work among threads, ghost region data is replicated
for each thread, and “owner computes” rule is applied for every thread.
We expect this implementation to give much better performance than
when work is divided by the compiler. The performance data in Table 1
on up to 512 nodes (2048 cores) appear promising for the hybrid model.
However, the performance advantage primarily stems from algorithmic
reasons (see Table 2). It is well known in the domain decomposition liter-
ature that the convergence rate of single level additive Schwarz method
(parallel preconditioner in PETSc-FUN3D code [2]) degrades with the
number of subdomains. Therefore, the preconditioner is stronger in the
hybrid case since it uses fewer subdomains as compared to pure MPI case.
We believe this to be one of the most important advantages of the hybrid
model. In our full paper, we will have more details on this issue, com-
pare three different implementations of the hybrid model, and document
performance data on more machines.
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Abstract

This report presents first results of a pipelined wavefront parallelization approach applied to the lattice Boltzmann

method in 3D. Threads executing successive time steps on a fixed spatial domain are scheduled to the same multi-

core processor chip having a shared cache. The efficient reuse of data in cache by successive threads implements a

multicore-aware temporal blocking parallelization in a rather simple way.

Keywords: lattice Boltzmann, CFD, temporal blocking, multicore, wavefront

1 Introduction

Recently Datta et al. [1] have shown that substantial effort has to be put into optimizations for stencil based meth-

ods, such as the Jacobi iteration in 3D, to reach an optimal implementation on state-of-the-art multicore architectures.

Spatial blocking techniques, as used in that work, divide the computational domain into more compact blocks and

therefore can enhance locality making better use of the caches. Performance can often further be increased by doing

multiple time steps on one block. This technique is called temporal blocking. With every additional time step per-

formed, however, the block shrinks in each of the dimensions, leading to rather shorter loops and increased overhead

which may severely limit the benefit of temporal blocking. Furthermore, specific platform-dependent tuning param-

eters, e.g. the block size in every dimension, have to be carefully adjusted. Hardware independent, so called cache

oblivious algorithms, e.g. Frigo et. al [2], come at the cost of many data TLB misses as shown in [3] for a 3D lattice

Boltzmann flow solver due to irregular access patterns.

This paper presents first results of a multicore-aware lattice Boltzmann method based solver in 3D using a pipelined

wavefront parallelization approach. Owing to its explicit nature and a cellular automata like update rule, the basic

lattice Boltzmann algorithm is easy to implement, optimize and analyze. Compared to, e.g. Jacobi solvers, the larger

stencil, e.g. the D3Q19 stencil used here, require the use of even smaller block sizes for traditional temporal blocking

techniques. To overcome this limitation a wavefront based temporal blocking technique is proposed, similar to the

one described in [9] for an Jacobi solver. Parallelization of the algorithm does not partition the domain right away,

but executes several threads on the same domain with a certain spatial displacement. The displacement must be large

enough to sustain the computational correctness depending on the stencil used to avoid race conditions among the

threads. All threads of a so-called wavesocket are bound to a single multicore chip with a shared cache, which reduces

the access to memory to one load for the initial data and to one store at the end of the temporal iterations.

2 Multicore testbeds

The key architectural features of the three compute nodes evaluated in this report are presented in Tab. 1. Performance

data was obtained for domains which exceed the cache size by far. Since stencil computations are data intensive,

the attainable main memory bandwidths as measured with optimized stream benchmark [10] runs are shown as well.

“Optimized” refers to the use of non-temporal stores which are important to get unbiased results on x86 architectures

as described in [9].

Modern multicore processor have different numbers of processor cores, which can communicate in many different

and sophisticated ways. To express which cache level is shared by how many cores, a convenient terminology is
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Woodcrest Dunnington Nehalem

Type
Xeon 5160

@3.0GHz

Xeon 7460

@2.66GHz

Xeon

@2.66GHz

size [kB] 32 32 32
L1 group

TRIAD GB/s 3.7 3.0 11.6

L2 size [MB] 4 3 0.25

L2 group shared by # cores 2 2 1

TRIAD GB/s 3.7 3.5 see L1

L3 size [MB] - 16 8
L3 group /

shared by # cores - 6 4
socket

TRIAD GB/s - 3.5 16.6

# sockets 2 4 2

System raw bw [GB/s] 21.3 34.0 51.2

TRIAD GB/s 6.7 13.2 32.7

Table 1: Overview on cache group structure and STREAM TRIAD performance for the systems in the test-bed. Non-

temporal stores were used throughout, so all bandwidth numbers denote actual bus traffic. STREAM array size was

20,000,000 elements.

introduced: The group of cores of a processor that share a certain cache is called a cache group. Thus, there are

L1 groups (which consist of a single core on all current multicore designs), L2 groups, etc.. There can be multiple

instances of any cache group on a multicore chip. Note that the focus lies on the cache levels available for data only,

ignoring all instruction caches.

This report focuses on Intel based multi-socket platforms using state-of-the-art dualcore (“Woodcrest”), hexacore

(“Dunnington”) and quadcore (“Nehalem”) variants. As the lattice Boltzmann kernel on a single core can already

saturate most of the memory bandwidth on those systems, temporal blocking is the most promising method of opti-

mization. For all tests the Intel Fortran compilers in version 11.0.069 were used.

3 Lattice Boltzmann method

The lattice Boltzmann method (LBM) has evolved over the last two decades and is today widely accepted in academia

and industry for solving incompressible flow problems. Coming from a simplified gas-kinetic description, i.e. a

velocity-discrete Boltzmann equation with appropriate collision term, it satisfies the Navier-Stokes equations in the

macroscopic limit with second-order of accuracy [4,5]. Here the D3Q19 discretization model, i.e. 19 discrete velocities

in three spatial dimensions, with the BGK collision operator is used.

The evolution of the single particle distribution function fi is described by the following equation (i= 0 . . .18):

fi(�x+�ei∆t, t+∆t) = f colli (�x, t) = fi(�x, t)−
1

τ

�

fi(�x, t)− f
eq
i (ρ(�x, t),�u(�x, t))

�

with f
eq
i (ρ(�x, t),�u(�x, t)) = ρ(�x, t)wi

�

1+
3

c2
�ei ·�u(�x, t)+

9

2c4
(�ei ·�u(�x, t))

2
−

3

2c2
�u(�x, t) ·�u(�x, t)

�

where f colli denotes the ”intermediate” state after collision but before propagation. ρ and �u are the macroscopic

quantities and are obtained as 0th and 1st order moments of fi with regard to the discrete velocity �ei, i.e. ρ(�x, t) =

∑18
0 fi(�x, t) and ρ(�x, t)�u(�x, t) = ∑18

0 �ei fi(�x, t). The Taylor-expanded version of the Maxwell-Boltzmann equilibrium

distribution function [5, 6] f
eq
i is given by Eq. 1, wi are direction-dependent constants [6] and c = ∆x

∆t with the lattice

spacing ∆x and the lattice time step ∆t. The equation of state of an ideal gas provides the pressure p, p(�x, t) = c2sρ(�x, t),
with cs as the speed of sound. The fluid’s kinematic viscosity is determined by the dimensionless collision frequency
1
τ according to ν = 1

6
(2τ −1)∆xc with τ > 0.5 due to stability reasons [4–6].



180

21st International Conference on Parallel Computational Fluid Dynamics

For solid wall boundaries, the boundary conditions are realized by the bounce-back rule [4,5], i.e. if a distribution

is about to be propagated into a solid cell, the distribution function returns to the original cell but with reversed

momentum. Bounce-back generally assumes that the wall is in the middle between the two cell centers. In the half-

way formulation this leads to:

fī(�x, t+∆t) = f colli (�x, t)

with�eī =−�ei and f colli (�x, t) being the right hand side of Eq. 1. The fullway bounce-back on the other hand is given by:

fī(�x, t+∆t) = f colli (�x, t−∆t).

In order to apply the halfway bounce-back, the propagation is first done for fluid cells only and afterwards the dis-

tributions pointing to obstacles are handled by simply reversing the distribution in direction inside the fluid cell. In

contrast, for the fullway bounce-back the fluid cells propagate the distributions into all surrounding cells. In the next

time step, values stored at the obstacles’ positions are reversed in direction and propagated back to the originating

cells. This implementation uses the fullway bounce-back, as it can more easily be adapted to the pipelined parallel

wavefront approach. Future work will also employ the halfway bounce-back.

3.1 Implementation

The basic LBM in 3D can be implemented with three nested loops traversing the computational domain and updating

each lattice cell. As a starting point we use a mature and well optimized LBM kernel in 3D as described in [7,13,14].

In our discussion we use Fortran indexing, i.e. in multi-dimensional arrays the first/inner most index is consecutive in

main memory, and focus on memory bandwidth bound problems.

A single LBM “sweep” through the complete domain is usually wrapped into an iteration loop, which performs

several time steps. Often a two grid approach is implemented, i.e. one array holds the original data and one the

updated data, allowing for simple implementation and parallelization. After each outer iteration, the grids are sim-

ply interchanged. Using the structure-of-arrays layout “SOA”, F(i,j,k,Q,t), the overall data transfer on cache based

architectures for a single lattice site update is 19 ∗ 8 ∗ 3 Byte (for more details we refer to [7]). Together with the

STREAM bandwidth numbers (cf. Tab. 1) one can easily estimate the maximum performance of the compute systems

under consideration in terms of the fluid cell update rate given in million fluid cell updates per second (FluidMLUPs).

The attainable STREAM bandwidth for the Woodcrest L2 cache group is measured as 3.7 GB/s (6.3 GB/s for the

node respectively), therefore the upper limit is 8 FluidMLUPs (14 FluidMLUPs). For the Dunnington the limit is

7 FluidMLUPs for the L2 and L3 cache groups (28 FluidMLUPs for the node respectively), and the estimates for

the Nehalem are 36 FluidMLUPs for the L3 cache group (71 FluidMLUPs for the node respectively). The code was

parallelized by applying OpenMP parallel do work-sharing directives to the outermost (k) loop. ccNUMA data

locality was ensured by parallelizing the initialization loops as well.

As can be seen from Fig. 2 for Woodcrest and Dunnington the results are in very good agreement with our esti-

mations, both get 85 % of the attainable STREAM bandwidth. The Nehalem however performs only with 77 % of

the estimated performance, which is due to the relatively short running inner (i) loop and the sub-optimal data layout,

for this particular new hardware design. Benchmarks show that the F(i,Q,j,k,t) layout is able to get up to 85 % of

performance as well. A detailed discussion however would be beyond the scope of this report.

Pipeline parallel wavefront implementation

The pipeline parallel wavefront approach does not perform several timesteps after another for a compact block of the

domain. In contrast it traverses the whole computational domain assigned to one cache-group. For each cache group,

one so-called wavesocket is launched. A wavesocket comprises as many independent threads as there are cores in

the group. Note that it is essential to employ proper thread/core affinity to ensure that each wavesocket is always

scheduled to the same cache group. In this preliminary report we focus on a wavesocket with two threads, i.e. two

successive time steps are performed by the two threads, where the second update should be done on data available in

the shared cache.

The basic idea is illustrated in Fig. 1 where Thread 0 does the collision for all fluid cells in plane k and propagates

the new distribution functions to three adjacent planes (k−1,k,k+1) residing in the second array (see arrows down

in Fig. 1).
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Figure 1: Time blocking through pipeline parallel pro-

cessing by a two-thread wavefront group. Dashed boxes

indicate (i, j) layers that must be kept in cache for opti-

mal reuse of cache lines.
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Figure 2: Performance comparison of the wavefront op-

timized LBM implementation with the standard imple-

mentation. All systems have been used with a maxi-

mum number of threads, i.e. 4 threads on Woodcrest, 16

threads on Nehalem (SMT on) and 24 threads on Dun-

nington. For the computational domain 600 was chosen

in k-direction and 32 / 48 / 64 in j-direction for Wood-

crest / Nehalem / Dunnington.

At the same time Thread 1 can perform the collision of the updated (t+ dt) values in plane k− 2 which do not

have to be loaded from main memory again as long as the shared cache is large enough to hold the data in the lower

dashed box of Fig. 1. Finally Thread 1 propagates them (see arrows up in Fig. 1) back to the original array which

then holds data for time step t ahead of the first wavefront (Thread 0) at larger k and the distribution functions for time

step t+ 2dt in the planes already visited by Thread 0 before (at smaller k). It is obvious that in this approach the use

of a second array spanning the complete computational domain is obsolete. It can be replaced by a temporary array

holding 4 k planes, reducing the memory footprint of the LBM code by almost a factor of two.

If the shared cache is large enough to hold the two dashed boxes in Fig. 1, i.e. the complete temporary array and

4 k planes of the original array, then the overall data transfer for performing two updates on a single cell is just 19

load and 19 store operations, i.e. 2 ∗ 19∗ 8 Byte per cell. This compares to 2 ∗3∗19 ∗8 Bytes per cell if both arrays

are traversed twice as done in the original implementation. Thus, a maximum speed up of three may show up for this

simple and straightforward wavefront implementation. Please note that the performance gain is larger than the number

of time steps “blocked”, because this implementation avoids the “Read for Ownership” (RFO) if writing back to the

second array without reading it before. Here we store to the same array which has been loaded before and there is no

need for the RFO if the cache is sufficiently large.

3.2 Results

In order to obtain accurate and comprehensive results, care has to be taken to properly pin the threads of common

wavesockets to common cachegroups [12]. The results shown in Fig. 2 are a selection of various benchmark scenarios.

The wavefront parallelized version of the LBM leads to a 35 % higher performance on the Woodcrest node.

Performance on the Nehalem system improves, however, only by 15 %. Due to the substantially better system balance

of the Nehalem, the baseline performance is already high. The Dunnington, in contrast to the Nehalem, has a rather

low system balance and is considered as a “bandwidth-starved” system design. However, it may be a somewhat

prototypical for multicore chips to come. STREAM measurements show that already two of the six cores of a socket

can saturate the full memory bandwidth. This leaves a lot of potential for temporal blocking techniques and so

Dunnington shows the best gain from the pipeline parallel wavefront optimization, nearly doubling performance as

compared to the standard implementation. For all systems, the performance gap is expected to grow with larger domain

sizes.However, additional spatial blocking must be applied to a wavesocket’s lattice partition to efficiently support
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larger domains than those shown in Fig. 2. To avoid short inner loops blocking in j-direction is in order. It is also

straightforward [9] to run more than two threads, e.g. 4 or 6 on the Dunnington system, in a single wavesocket further

reducing the overall memory transfer. Furthermore, no cache optimizations for the kernel have been implemented so

far. Work on all these topics is currently being done.

4 Conclusions and Acknowledgements

It was shown that pipelined wavefront parallelization efficiently implements temporal blocking for a large stencil based

flow solver on Intel multicore CPUs. Especially highly bandwidth-starved systems show a substantial gain in terms of

performance if this technique is applied.

We are indebted to Intel Germany for providing the “Nehalem” compute node through an early access program.

This work was carried out within the Bavarian framework of KONWIHR. Financial support from BMBF through

project SKALB (grant 01IH08003A) is gratefully acknowledged.
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1. INTRODUCTION

Numerical solution of linear problems arising from discretization by finite elements is important in many areas
of engineering. The matrix of the system is typically large, sparse, and often ill-conditioned. For large problems,
iterative methods such as the preconditioned conjugate gradients (PCG) are usually less expensive in terms of memory
and computational time. However, their convergence rate deteriorates with growing condition number of the solved
linear system and good preconditioning becomes essential. The need of first-rate preconditioners tailored to the solved
problem, which can be implemented in parallel, gave rise to the field of domain decomposition methods [12].

The Balancing Domain Decomposition based on Constraints (BDDC) [4, 9] is one of the most advanced precondi-
tioners of this class derived for symmetric positive definite problems.

We have implemented a parallel version of the BDDC method and verified its performance on problems arising
from linear elasticity problems. Then the method was successfully applied to the Stokes problem, which is beyond the
standard theory of the BDDC method.

2. BDDC DOMAIN DECOMPOSITION METHOD

The Balancing Domain Decomposition by Constraints (BDDC) method can be understood as a preconditioner for
large systems arising from finite element analysis. It was introduced by Dohrmann [4] in 2003 and the theory was
developed by Mandel and Dohrmann in [8]. The preconditioner was reformulated by Li and Widlund in [7].

Let Ω be a bounded domain in R2 or R3, let U be a finite element space of piecewise polynomial functions v
continuous on Ω and U  its dual space. Let a(·, ·) be a bilinear form on U × U and f ∈ U , and let ·, · denote the
duality pairing of U  and U . Consider an abstract variational problem: Find u ∈ U such that

(1) a(u, v) = f, v ∀ v ∈ U .

For the case of linear elasticity,

a(u, v) =


Ω

(λ(∇ · uh)(∇ · vh) +
1
2
µ(∇uh + ∇T uh) : (∇vh + ∇T vh))dΩ,(2)

f, v =


Ω

f · vhdΩ.(3)

Here solution u = uh represents the discretized vector field of displacement, λ and µ represent the first and the second
Lammé’s constant, respectively, and f represents the external load.

1
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2

For the case of steady Stokes flow we adopt the following slightly unusual notation

a(u, v) = ν



Ω

∇uh : ∇vhdΩ−


Ω

ph∇ · vhdΩ +


Ω

ψh∇ · uhdΩ,(4)

f, v =


Ω

f · vhdΩ.(5)

Solution u = (uh, ph) consists of the discretized vector field of velocity and the discretized scalar field of pressure, ν
represents the kinematic viscosity of the fluid, f represents the external load, and v = (vh, ψh).

For the case of linear elasticity, a(u, v) is a symmetric positive definite bilinear form on U×U , while for the Stokes
problem, it is symmetric indefinite [2, 5].

Write the matrix problem corresponding to (1) as

(6) Au = f.

The domain Ω is decomposed into N nonoverlapping subdomains Ωi, i = 1, ..., N , with characteristic size H ,
which form a conforming triangulation of the domain Ω. Each subdomain is a union of several finite elements of the
underlying mesh with characteristic mesh size h, i.e. nodes of the finite elements between subdomains coincide.

Unknowns common to at least two subdomains are called boundary unknowns and the union of all boundary
unknowns is called the interface Γ.

Let Wi be the space of finite element functions on subdomain Ωi and put

(7) W = W1 × · · · ×WN .

It is the space where subdomains are completely disconnected, and functions on them independent of each other.
Clearly, U ⊂ W .

The main idea of the BDDC preconditioner in the abstract form [10] is to construct an auxiliary finite dimensional
space W such that

(8) U ⊂ W ⊂ W,

and extend the bilinear form a (·, ·) to a form a (·, ·) defined on W ×W , such that solving the variational problem (1)
with a (·, ·) in place of a (·, ·) is cheaper and can be split into independent computations performed in parallel. Then
the solution restricted to U is used for the preconditioning of (6). Space W contains functions continuous at selected
coarse degrees of freedom such as values at selected nodes called corners. This space corresponds to a fictious mesh
with connections limited to corners, as illustrated in Figure 1.

In computation, the corresponding matrix denoted A is used. It is larger than the original matrix of the problem
A, but it possesses a simpler structure suitable for direct solution methods. This is the reason why it can be used as a
preconditioner.

The projection E : W → U is realized as a weighted average of values from different subdomains at unknowns on
the interface Γ, thus resulting in functions continuous across the interface.

Let r ∈ U  be the residual in an iteration of an iterative method. The BDDC preconditioner MBDDC : U  → U in
the abstract form (see [10]) produces the preconditioned residual v ∈ U as

MBDDC : r → v = Ew,

where w ∈ W is obtained as the solution to problem

(9) w ∈ W : a (w, z) = (r, Ez) ∀z ∈ W,

or in terms of matrices as

(10) v = E A−1ET r.

3. NUMERICAL RESULTS

Our parallel implementation of the BDDC preconditioner has been extensively tested on problems with symmetric
positive definite matrices arising from linear elasticity (e.g. [11]). The current version is based on the multifrontal
massively parallel sparse direct solver MUMPS [1], which is used for factorization of matrix A in (10). The parallelism
is obtained through the parallel direct solver used for factorization of the matrix of preconditioner, in combination with
parallel PCG method.
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FIGURE 1. Example of an actual mesh (top) and the corresponding fictious mesh for construction
of BDDC preconditioner (bottom), blue dots mark corners

The applicability of the preconditioner to the steady problem of Stokes flow was tested, and results are presented in
this contribution. The system matrix of the Stokes problem is symmetric, but indefinite. For this reason, the standard
theory of BDDC does not cover this case. A way to assure positive definiteness of the preconditioned operator based on
BDDC was presented by Li and Widlund [6]. Their method relies on coarse degrees of freedom consisting of special
averages on edges of subdomains. However, the approach is limited to piecewise constant pressure approximation.
For P2/P1 and Q2/Q1 Taylor-Hood finite elements (e.g. [2]) used in our computations, we were not able to obtain
contributive results by that method. Instead, presented problems were successfully solved with basic constraints as
continuity at corners in the BDDC preconditioner setup. For the Stokes problem, matrix A is symmetric indefinite and
as such is factorized by the MUMPS solver. Thus, the method leads to an indefinite preconditioner.

The method was first tested on the problem of lid driven cavity, a popular benchmark problem for methods for vis-
cous flow. The domain is a unit square with homogeneous boundary conditions except horizontal velocity prescribed
on the upper side. Thus, the entire motion in the cavity is driven by viscosity of the fluid. The case of uniform mesh
of 128 ×128 Q2/Q1 elements was chosen. It was divided into 8 subdomains by METIS package (Figure 2).

Resulting streamlines and plot of pressure for Reynolds number 10, 000 are presented in Figure 3. Streamlines are
symmetric along the vertical centreline for the Stokes problem.

Solution of the problem by our earlier solver based on a serial frontal algorithm took 231 seconds on one 1.5 GHz
Intel Itanium 2 processor of SGI Altix 4700 computer in CTU Supercomputing Centre, Prague, compared to 17.2
seconds on 8 processors of the same computer necessary for the solution by the new implementation of BDDC. The
stopping criterion of PCG was chosen as r2/g2 < 10−3, resulting in 59 PCG iterations.

In the second example, a geometry with a sudden reduction of diameter is considered. Flow in this geometry
described by the Navier-Stokes model was studied in [3], with respect to precise solution of corner singularities. Due
to the symmetry of the channel, only the upper part is considered in the computation. Division into 4 subdomains
obtained by METIS is presented in Figure 4.

Solution obtained by BDDC method at Reynolds number 250 for the Stokes flow is presented in Figure 5. The
stopping criterion of PCG was chosen as r2/g2 < 10−3, resulting again in 59 PCG iterations. Note, that fluid
flows from right to left in the plot of pressure in order to show the situation at corners of domain.

To investigate the performance of the BDDC preconditioner in combination with standard iterative methods for
general matrices, namely BICGSTAB and GMRES, we have also performed several preliminary experiments with
our serial code written in MATLAB. In Table 1, we compare the resulting number of iterations of these methods
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FIGURE 2. Mesh and its division into 8 subdomains for lid driven cavity, 128 × 128 elements
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FIGURE 3. Streamlines (left) and pressure (right) for lid driven cavity, 128 × 128 elements

0 0.05 0 1 0.150 .
FIGURE 4. Mesh and its division into 4 subdomains for channel with sudden reduction of diameter,
only the upper part of the channel is considered for symmetry.

preconditioned by BDDC and by the ILU preconditioner for several values of treshold τ for dropping entries in
incomplete factorization for the cavity problem. The desired tolerance of relative residual for these methods was
chosen as r2/g2 < 10−8. Where ‘n/a’ is present in the table, BICGSTAB failed to converge.

without BDDC BDDC ILU ILU ILU
iterative method preconditioner corners only corners+faces τ = 10−3 τ = 10−4 τ = 10−5

BICGSTAB n/a 45 22 n/a 331 10
GMRES 759 49 38 472 87 18

TABLE 1. Number of iterations for BICGSTAB and GMRES without preconditioning, and pre-
conditioned by BDDC and ILU, lid driven cavity.
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FIGURE 5. Detail of streamlines (left) and pressure (right) for channel with sudden reduction of
diameter, Re = 250

4. CONCLUSION

In our contribution, we present a parallel implementation of the BDDC preconditioner. After a verification of the
solver on a number of problems from linear elasticity analysis, we explore the application of BDDC to problems
with indefinite matrices, namely the Stokes problem. Although the available theory either does not cover this case,
or treats it differently [6], the presented experiments suggest promising ways for this effort. Without claiming that
this is the general case, we have performed several experiments, for which PCG was successfully used even if the
system was indefinite. The reason why a breakdown was not observed lies probably in the indefiniteness of the BDDC
preconditioner for this case and deserves further investigation. Our serial experiments also led to promising results
for combination of BDDC method with standard iterative methods for solving systems with general matrices, such as
BICGSTAB and GMRES.
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Abstract: This paper focus on the parallel implementation and evaluation of the Aitken-Schwarz method
when it applied to 3D Darcy flow where the permeability field is randomly distributed and exhibits strong
variations. For this problem with a non-separable operator the matrix P involved in the acceleration is no
more diagonal and must be built adaptively as in [2] for 2D problems. Special care is brought to the
building of P with respect to the parallel architecture capabilities.
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1 INTRODUCTION

The Aitken-Schwarz method [1, 4] demonstrated great efficiency on metacomputing framework for sep-
arable operators [3]. For non separable operators the decomposition in ”Fourier” modes of the iterate
solution at the artificial interface generated by the domain decomposition is no more available. Then the
P matrix arising in the Aitken acceleration is no more block diagonal, and the Aitken formula cannot
be applied for each ”Fourier” mode separately. [2, 5] report an extension of the Aitken-Schwarz to non
separable operators, where the matrix P is built adaptively with respect to the modes that have not
converged. The present work focus on the parallel implementation and evaluation of this method when it
applied to Darcy flow where the permeability field is randomly distributed and exhibits strong variations.

2 THE AITKEN-SCHWARZ METHOD APPLIED TO DARCY FLOW

2.1 The Darcy flow equation with strong variation in the permeability field

On the macroscopic scale, a porous medium can be described by a model where the solid and the
fluid occupy the entire volume. The medium is regarded as a homogeneous domain and modeled as a
continuum where a representative volume element is larger than the average pore size but much smaller
than the length scale of the system. For this model of saturated flow in homogeneous porous media, the
balance of momentum is given by Darcy’s law:

�
µu + K∇p = 0, in Ω
∇.u = f, in Ω

(1)

p = 0 on ∂Ω. (2)

where u and P are the fluid velocity and hydrostatic pressure, µ is the fluid dynamic viscosity , and K is
the permeability of the porous medium. The last quantity depends on the structure of the solid matrix.
We will assume that the medium is isotropic, K = kI, where k is an averaged quantity. Since in the
Darcy’s equations viscous stresses on the fluid are neglected and only the damping force of the porous
medium is considered, it is valid for small permeabilities.

In the case of 3D medium, the computational domain is a regular grid on which a random hydraulic
conductivity field k is generated. This random hydraulic conductivity field K follows a stationary log-
normal probability distribution Y = ln(k), which is defined by a mean mY and a covariance function

CY (x, y, z) = σY exp(−[( x
λx

)2+( y

λy
)2+( z

λz
)2]

1
2 ) where σY is the variance of the log hydraulic conductivity

and λx λy and λz) are the directional correlation length scales in each direction. To generate the random
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hydraulic field, a spectral simulation based on the FFT method (Fast Fourier Transform method) is used.
For the sake of simplicity, we take the same value λ for λx, λy and λz .

The physical modeling of the heterogeneous media leads to several types of difficulties even for the
linear Darcy equation. The treatment of various scales leads to solving sparse linear systems of very big
size with bad condition number due to the heterogeneous permeability K.

The σ and the λ parameters play on the stiffness of the linear system to be solved. The range of σ2

is usually from 2 to 6 and the λ goes from 2 to 10. σ plays on the amplitude of the permeability K, for
σ2 = 4 the K varies in mean from 10−7.28 to 107.68. λ plays on the length scale for the change of K,
smaller is λ greater is the probability that the K vary strongly from cell to cell.

2.2 The Schwarz algorithm

The domain Ω is split in the z direction into overlapping macro-domains Ωi. the domain is discretized
with regular step sizes in each direction. The Schwarz algorithm consists to update the macro-domain
boundary conditions until convergence with taking values in the neighbors macro-domains.

Defining Ai the discrete operator of the Darcy equation on the macro-domain Ωi that takes into
account the Dirichlet boundary conditions on the two artificial interfaces Γi,l and Γi,r, then the multi-
plicative Schwarz algorithm writes:




A2i+1p
2n+1
2i+1 = f2i+1,

p2n+1
2i+1|Γ2i+1,l

= p2n
2i|Γ2i+1,1

p2n+1
2i+1|Γ2i+1,r

= p2n
2i+2|Γ2i+1,r




A2ip
2n+2
2i = f2i,

p2n+2
2i|Γ2i,l

= p2n+1
2i−1|Γ2i,1

p2n+2
2i|Γ2i,r

= p2n+1
2i+1|Γ2i,r

(3)

A parallel solver can be applied to solve the local problem each macro-domain. The convergence
of this two level domain decomposition is purely linear . Then the convergence to the solution can be
accelerated by the Aitken formula at the artificial interfaces as follows.

Defining V l =
�
p2l
2|Γ2,l

, p2l
2|Γ2,r

, . . . , p2l
2m|Γ2m,r

�
, the pure linear convergence writes: ∃P independent of

l such that

V l+3 − V l+2 = P(V l+2 − V l+1) (4)

The Aitken acceleration of the convergence writes

V ∞ = (I − P)−1(V l+3 − PV l+1) (5)

Once the converged solution is obtained at artificial interfaces, one local solve gives the solution on the
macro-domain.

2.3 Explicit building of P and Adaptive Aitken-Schwarz

Let Φ = {Φjk}j∈[0,...,N ],k∈[0,...,N ] be a set of orthogonal vectors with respect to a discrete Hermitian

form [[., .]]. One can consider without loss of generality that these vectors satisfy [[Φjk, Φjk]] = 1, ∀j, k ∈
[0, . . . , N ].

Consider the decomposition of the trace of the Schwarz solution pi|Γi,{l,r}
with respect to this or-

thogonal set: pi|Γi,{l,r}
=

�N

k=0

�N

j=0 αjk,{l,r}Φjk. with αjk = [[pi|Γi,{l,r}
, Φjk]]. Then the nature of the

convergence does not change if we consider the error coefficients in the basis {Φjk}j∈[0,...,N ],k∈[0,...,N ]

instead of the error in the physical space. One can write the error components iterations equation but
in the coefficient space.

Let V̂ l =
�

[[p2l
2|Γ2,l

, Φ]], [[p2l
2|Γ2,r

, Φ]], . . . , [[p2l
2m|Γ2m,r

, Φ]]
�

Then, we can write in the coefficient space:

V̂ l+3 − V̂ l+2 = P̂(V̂ l+2 − V̂ l+1) (6)

This matrix P̂ has the same size as the matrix P. Nevertheless, we have more flexibility to define some
consistent approximation of this matrix, since we have access to a posteriori estimate based on the
module value of the Fourier coefficients.

The explicit building of P̂ consists to compute how the basis functions Φjk are modified by the Schwarz

iterate. Figure 1 describes the steps for constructing the matrix P̂. Step (a) starts from the the basis
function Φk and gets its value on the interface in the physical space. Then step (b) performs two Schwarz
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Figure 1: Steps to build the P̂ matrix

iterates with zero local right hand sides and homogeneous boundary conditions on the others artificial
interfaces. Step (c) decomposes the trace solution on the interface in the basis Φ. Thus, we obtains

the column k of the matrix P̂. The full computation of P̂ can be done in parallel, but it needs as much
local subdomain solves as the number of interface points (i.e the size of the matrix P̂). Its adaptive
computation is required to save computing. The Fourier mode convergence gives a tool to select the
Fourier modes that slow the convergence and have to be accelerated.

3 PARALLEL IMPLEMENTATION

We consider the 3D Darcy equation with Dirichlet boundary condition in X and Y direction and Dirichlet
boundary conditions in Z where the domain is split. The domain is a cube [0, π]3 with a regular step
size discretizing. The difference between two Schwarz iterates satisfies homogeneous Dirichlet B.C. in X

and Y . This leads to have φjk = sin(j x) sin(k y), j ∈ [1, . . . , N ], k ∈ [1, . . . , N ].
The two-level parallelization is performed by creating a 6D cartesian topology under the Message

Passing Interface (MPI). The first level consists of splitting the domain, whatever the number of direc-
tions, into subdomains called Macro-domains. The second level consists of splitting a Macro-Domain,
whatever the number of directions, into subdomains.
The mesh is built setting-up the number of Macro-domains and the number of subdomains. We specify
the size of one subdomain.
The following figure presents a domain decomposition for 2 Macro-domains in Z direction, and 2 subdo-
mains in Z, Y and X directions. Processors are enumerated following a global MPI process distribution.
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Figure 2: (left) 6D MPI cartesian topology. (right) Exchange of faces between Macro-domains for Z
direction splitting

So, the Schwarz method can be set-up choosing how to use the mesh.
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3.1 Schwarz exchange

The Schwarz exchanges for a 3D problem involve the sent of a face of a Macro-domain which is distributed
on several subdomains. Two issues can be considered.
The first one is based on a totaly distributed program where each subprocess which computes a part of
a face of a Macro-domain communicates with the subprocess of the Macro-domain neighborhood which
compute the corresponding part of a face. The number of exchange and the time spent for the commu-
nications increase with the number of subprocesses on a face of a Macro-domain but the size of the data
transfer is smaller than a global sent.
The second possibility is to store a face on such a main process of a Macro-domain and exchange a global
interface between Macro-domain. Then, the number of exchange is minimized but the size of the data
transfer is larger as the size of a Macro-domain face.

For this study the choice of a global sent between Macro-domain has been done, motivated by the fact
that one Macro-domain can be handled by one cluster and communicate with another Macro-domain
through a cable network.

We build a Macro-Domain decomposition with overlap 1 and overlap 0 between subdomains. The
first implementation consists of splitting the domain into Macro-domains in Z-direction and splitting
Macro-domains into subdomains in all directions. A face is collected on the processor 0 of a Macro-
domains. Each processor 0 of a Macro-domain can communicate with the processor 0 of a Macro-domain
of its neighborhood.

3.2 Solving macro-domains problem

The problem is splitted between Macro-domains with an overlap. Each Macro-problem can be considered
as an independent problem. One Macro-domain can be sliced in all the directions without overlap.
Then parallel solver like MUMPS can be used with a distribution of data between Macro-domain’s
processors. The processor 0 of a Macro-domain deals with the right hand side and the solution. This is
the default of the present implementation.
A logical factorization is saved before a solving phase of MUMPS. We used this factorization to solve
problem with several right hand side to perform the method presented in the previous section. The first
column of the right hand side for the real problem, the other columns for each Fourier modes.

3.3 FFTs

The method for non separable operator needs Fourier Transform or Sinus transform. The parallelization
of this phase will be discussed. However the first way is to developp one FFT per Macro-Domain.

4 SCHWARZ ON 3D DARCY FLOW PROBLEM WITH STRONG VARIATION IN THE
PERMEABILITY FIELD - FIRST RESULTS

The following study is based on the 3D Darcy flow equation with strong variation in the permeability
which is developped in the first section. The Physical domain is a cube of size π. We set Dirichlet B.C.

as −10(e−(x−π
2
)2 − e

π2

4 )(e−(x−π
2
)2 − e

π2

4 ) at z=0.0 and 0 at z = π.
We set the parameter for the K generation considering the first section:σ2 = 4 and λ = 5. The domain
is sliced in the Z direction both for the first parallelization level and in three dimension for the second,
with 2 Macro-domains and 8 subdomains per Macro-domain. For a slab, we set the local number of
discretization point in each direction as nz = 17, ny = 66, nx = 66. The global grid has 66 points in the
X , Y and Z directions.
The following figures show the permeability and the solution on center planes. The third picture shows
the linear Schwarz convergence for 2500 alternative steps on the interface and the convergence after 3
alternative steps where P̂ is fully computed after 2 steps.
These results were obtained using 16 processors of a SGI-Altix 350.
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Figure 3: (left corner) Permeability K (log10). (right corner) Hydraulic field. (down) Schwarz error on
interface.

5 CONCLUSION

The point of this study is to developp a method which can deal with non separable operator for large
problem. The Schwarz method is accelerated by Aitken. The matrix of acceleration is built adaptively
with taking the transformation of Fourier basis with the Schwarz avoiding some matrix inverting in the
building.
A two-level parallelization is implemented. One level is devoted to the Schwarz method and can be used
to send large messages through the network. The lower level is used for the solving phase handeled by a
Macro-domain.
A first test case was implemented and run on 2 Macro-domains of 8 subdomains, which represents 16
processors of the SGI-Altix 350 we use. We can observe Schwarz linear convergence on interface. Results
will be presented on large parallel machine.

Acknowledgement: This work was funded by the French National Research Angency through projects
ANR-07-TLOG-011-03 LIBRAERO and ANR-07-CIS7-004-03 MICAS, and the cluster ISLES/CHP of
the region Rhône-Alpes.
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Abstract

1 Introduction

This paper presents the performance of the Deflated Preconditioned Conjugate Gradient (DPCG) solver
on a distributed memory supercomputer. When using fractional step techniques, or equivalently pressure
Schur complement based techniques to solve the incompressible Navier-Stokes equations, we end up with a
symmetric algebraic system for the pressure. In many applications, this pressure solver is the most time con-
suming part of the overall solution strategy. In addition, the parallel performance of symmetric solvers, like
the classical Conjugate Gradient (CG), is very poor as it involves mainly matrix-vector multiplication and
scalar products and very few floating point operations apart from these operations. The deflated conjugate
gradient has been known now for a decade and hasn’t received much attention, despite its extremely nice
properties. In the next section we will present the numerical context. In the next section we will introduce
the DPCG and present some examples showing its performance compared to the simple CG. Finally, some
details of its parallel implementation will be given.

2 The governing equations

When discretizing the Navier-Stokes equations using a numerical method, one obtains a coupled system for
the velocity u and pressure p to be solved at each time and linearization step:


Auu Aup

Apu App

 
u
p


=


bu

bp


.

Matrix Auu includes the Galerkin as well as the stabilization terms, like the SUPG-like term and the con-
tinuity enforcing term. Matrix Aup includes the Galerkin pressure term. Matrix Apu includes the velocity
divergence operator as well as the part of the pressure stabilization involving the velocity in the momen-
tum residual. Finally, matrix App includes only the pressure stabilization. Note that this matrix is null if

1
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div-stab elements are used. The solution of this system, using a direct solver or an iterative solver with
preconditioning, is referred to as monolithic scheme.

The approach followed in this work is algebraic and is extensively studied in [4]. From system (1),
we extract the Schur complement system for the pressure, say Sp = bs. Then an iterative techniques are
applied to solve this system, based on the simple iteration

pk+1 = pk + αQ−1(bs − Spk),

where Q is the preconditioner, and α is computed such as the residual is minimized at iteration k + 1. The
resulting algorithm, referred to as Orthomin(1), consists of the following Algorithm.

Algorithm 1 Momentum preserving Orthomin(1) iteration
1. Solve momentum eqn Auuuk+1 = bu − Auppk.
2. Compute Schur complement residual rk = [bp − Apuuk] − Apppk.
3. Solve continuity eqn Qz = rk.
4. Solve momentum eqn Auuv = Aupz.
5. Compute x = Appz − Apuv.
6. Compute α =< rk,x > / < x,x >.
7. Update velocity and pressure


pk+1 = pk + αz,
uk+2 = uk+1 − αv.

3 Deflated Conjugate Gradient

At each iteration of the previous algorithm, a preconditioner for the pressure should be solved. This system
is Symmetric Positive Definite (SPD) as it is basically a Laplacian plus stabilization terms. The conjugate
gradient [3] is the method of choice for solving SPD systems in an iterative way. It needs very few memory
requirements, which is particularly attractive for three dimensional problems, and may be viewed as a direct
method, giving the solution in a finite number of steps in exact arithmetic, although it converges must faster
in practice. The CG algorithm generates a sequence x1, ..., xi such that:

xi ∈ x0 + Ki (1)

where Ki = span{r0, Ar0, .., A
i−1r0} is the Krylov subspace of dimension i generated by the initial resid-

ual r0. At each step, the approximation xi verifies:

‖x − xi‖A = min
u∈x0+K

‖x − u‖A (2)

where ‖u‖A = (Au, u)
1
2 . The classical a priori bound for the error in the A-norm is:

‖ek‖A ≤ 2
√κ − 1√

κ + 1


‖e0‖A (3)

2
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where κ is the condition number of matrix A. However, as decribed in [9], the convergence speeds up
as soon as the lowest eigenvalues are ’discovered’ by the convergence process, giving rise to a condition
number based on the active i.e. the non discovered eigenvalues. Therefore, if some knowledge of the
eigenmodes associated to the lowest eigenvalues is at hand, removing them from the spectrum of A would
give rise to an increased convergence compared to the classical conjugate gradient process. That is what
the deflated conjugate gradient tries to achieve. The paper by Nicolaides [7] opens the way to the deflation
methods, where the basic idea is to remove some components of the initial residual which may impeed
convergence. As opposed to the multigrid techniques [6], no need for defining a smoother, a coarse grid or
a prolongation/restriction operator is necessary. A derivation of the deflated conjugate gradient is conducted
in [8] which is close to the classical conjugate gradient. This algorithm has been implemented in this paper.
For the sake of completeness, the deflated preconditioned conjugate gradient algorithm is given:

• Compute W T AWx0 = W T b

• Compute r0 = b − Ax0 and z0 = M−1r0

• Solve W T AWd = W T Az0 and set p0 = −Wd + z0

• Do until convergence:

αj = (rj , zj)/(Apj , pj) (4)

xj+1 = xj + αjpj (5)

rj+1 = rj − αjApj (6)

zj+1 = M−1rj+1 (7)

βj = (rj+1, zj+1)/(rj , zj) (8)

W T AWdj = W T Azj+1 (9)

pj+1 = zj+1 + βjpj − Wdj (10)

Compared to the classical Preconditioned Conjugate Gradient (PCG), the small matrix W T AW must be
inverted. This is performed with a direct skyline solver. An appealing aspect of the DPCG is that a pre-
conditioner may be applied on top of the deflation independantly. It is seen that in multigrid terms, W T

represents a restriction operator and W plays the role of a prolongation operator. Various methods may be
used to build these matrices. Various simple domain decomposition methods are discussed in [1]. In a serial
implementation, it is advantageous to store matrix W T A, as it is much sparser than matrix A. However, in a
parallel context, this construction is difficult and involves lots of communications. Furthermore, this has to
be performed every time that the matrix changes. In our particular implementation, an matrix-vector mul-
tiplication has therefore been added to the algorithm. A straightforward parallel implementation involves
a global reduction for the restriction operation needed to compute the right hand side of the small system.
This may however become rapidly the bottleneck of the whole process.

4 Results

Figure 1 compares the convergences histories of the CG, DCG and DPCG solver with linelet [5] precon-
ditioner on a 2D example. It consists of the first three time steps of a classical benchmark for turbulence
models. This simulation solves the thermal and turbulent flow in a tall cavity with anisotropic meshes [2].

3
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We observe that the CG does not even converge. The DCG does much better, but the use of the linelet speeds
up the DPCG dramatically, due to the strong mesh anisotropy.
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Figure 1: Comparisons of different CG solvers.

5 Conclusion

The Deflated Conjugate Gradient has been presented in this paper for the resolution of the Poisson iterative
solver inherent of incompressible algebraically splitted solvers. For the conference, further results in parallel
will be shown and details of its implementation will be given. It merely relies on a multilevel parallel method
for the implementation to be efficient.
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Abstract: In recent years the lattice Boltzmann method (LBM) has been established as a 
popular alternative to conventional computational fluid dynamics. With a free surface 
extension to the method, simulation of bubbly flows and even metal foaming processes is 
possible. The extension is based on a volume of fluid approach and an explicit tracking of the 
interface, including a reconstruction of the curvature to model surface tension. In order to 
accomplish realistic engineering applications, large domain sizes are required, and thus 
efficient parallelization for several thousand processes is inevitable. Our previous 
implementation of the parallel free surface algorithm used all-to-all communication schemes 
resulting in only moderate parallel efficiency when using more than hundred processes. 
Therefore, the algorithm has been adapted to communicate updates only locally in a restricted 
neighborhood, which complicates data exchange between processes, in particular when 
bubbles extend across several subdomains and in case topological changes occur through the 
coalescence of bubbles. The novel algorithm increases parallel efficiency and enables usage of 
several thousand processors, rendering large-scale engineering applications like simulation of 
liquid water in a fuel cell possible. It has been integrated into the waLBerla LBM framework, 
which features basic tools for communication and data management, designed for massively 
parallel flow simulations. With this implementation, free surface simulations exhibit parallel 
efficiency of 90% on up to 4 080 cores. 
Keywords: free surface; massively parallel merge algorithm; lattice Boltzmann method. 

 

1. INTRODUCTION 

Free surface flow is omnipresent in nature and everyday life. Examples are river flow, oceanic waves, rain, or 
sparkling water. However, it also plays a crucial role in technological processes. Simulation of many bubbles or of a 
highly resolved free surface can assist understanding of metal foaming processes (Fig. 1, [8]) or can be used for 
shape optimization of boats. In order to accomplish such engineering applications, large domain sizes are required, 
and thus efficient parallelization for several thousand processes is inevitable. Within our seven years of experience 
in using the lattice Boltzmann method (LBM) with a free surface extension [8, 13], Pohl [9] parallelized the 
algorithm by means of MPI. Since his method uses all-to-all communication schemes, it achieves only moderate 
scaling efficiency with more than hundred processes. Therefore, the algorithm has been adapted to avoid all-to-all 
communication schemes, which complicates handling of topological changes like regions of gas (bubbles) crossing 
process boundaries or coalescing with each other. The novel algorithm increases parallel efficiency and enables 
usage of several thousand processors, rendering large-scale engineering applications possible. It has been integrated 
into the waLBerla framework [2], which is a software suite uniting different LBM flavors with basic tools for 
communication and data management, designed for massively parallel flow simulations. It is used as platform for 
sophisticated extensions to the LBM. Besides blood flow and Brownian motion, most prominent examples are multi-
component flows, multi-phase or free-surface flows, and flows with moving objects. Most recently, large-scale 
simulation of fluid-structure interaction (FSI) has been accomplished (Fig. 2, [4]). With the successful integration of 
large-scale free surface method, simulation in fuel cells (see Sec. 3) is feasible, and possibly the combination with 
FSI will be achieved in future.  

1.1 Related Work 

Apart from the LBM, there is a variety of other computational fluid dynamics techniques to study multiphase flow 
phenomena, such as the volume of fluid method, level sets, and boundary integral methods. However, the advantage 
of LBM lies in its suitability for flows in complex geometries like porous media, since the mapping to the lattice is  
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Fig. 1: Simulation of foams with free-surface 
extension. 

Fig. 2: Parallel simulation of fluidstructure interaction. 

 Fig. 3: Data representation of a bubble in free-surface LBM: Gas and interface cells store an ID of the bubble. 
Additionally, each process stores a list of bubble entries with volume data. 

very flexible and involves little computational time. Gunstensen [5] and Tölke [14] presented enhanced variations 
based on the two-phase approach of Rothmann and Keller [10], which models capillary pressure resulting from the 
color gradient of a recoloring scheme. Shan and Chen [11] proposed to use an interaction potential representing 
molecular forces to simulate multiphase and multicomponent fluid flow. There are also methods based on free-
energy approach and level sets. Besides the multiphase and multicomponent models, a couple of free-surface models 
arose in the past decade for simulating moving interfaces between immiscible gas and liquids. The method proposed 
by Ginzburg and Steiner [3] is the foundation of the variant by Körner et al. [7] which is based on the assumption 
that the influence of gas phase on liquid phase can be reduced to the force exerted by its pressure and the surface 
tension. Since only the liquid phase is computed and the interface is a more complex boundary condition, this 
method saves computation time compared to the two-phase methods mentioned before. Pohl [9] implemented 
Körner's method for three dimensions and altered the algorithm to enable efficient MPI parallelization. 

1.2 Outline of Free Surface Lattice Boltzmann Method 

The LBM is a cell-based, local update scheme that performs collision operations on so-called particle distribution 
functions (PDFs) which represent the fraction of the total mass in each lattice site moving in a discrete direction. Its 
theory [12] has been proven to resemble a solution of Navier-Stokes equations solving time-dependent, quasi-
incompressible flows in continuum mechanics.  

The free surface extension introduces different cell types for gas, liquid and the interface in between. While gas cells 
are omitted, in liquid cells standard LBM is performed. A fill value specifies the quantitiy of liquid in a cell. At the 
interface, missing PDFs from the gas phase are reconstructed such that velocities of gas and liquid equal, and forces 
by the liquid, gas pressure, and the surface tension are balanced. Complex calculations compute the pressure of the 
bubbles from their volume and curvature. This implies, that additionally to cell-based data, each process holds 
volume information on the bubbles (see Fig. 3). 

For details on the LBM in general see [12]. Details on the free surface extension can be found in [7, 9].
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Fig. 4: Weak and strong scaling on a Woodcrest 
platform [15] simulating a single small rising bubble 
in the center of the domain.

Fig. 5: Weak scaling on an Itanium 2-based SGI Altix [6].

2. LOCALIZED BUBBLE MERGE ALGORITHM 

In previous implementations, handling of bubble data was not localized. Every process stored volume data of every 
bubble, irrespective where the bubble was located, and volume changes were communicated in each time step 
among all processes. Pohl [9] implemented two techniques to achieve this information exchange: Using all-to-all 
communication primitives of MPI library turned out to be less efficient than arranging all processes in a chain, 
where the two ends start to send packets upwards and downwards, respectively, and every participant in between 
merges the own information to the message which is passed on. The latter communication scheme results in N-1
iteration steps for N processes, but involves only direct neighbor communication, minimizing messages over slow 
connections if processes are properly placed in the network.  

In order to enable massively parallel free-surface simulations, the novel algorithm avoids global communication by 
storing bubble data only on processes that require it. As a consequence, bubbles crossing the boundary of a process 
have to be sent to the neighbor, and leaving of a bubble has to be recognized to allow deletion of volume data. 
Moreover, bubble coalescence has to be handled locally among the involved processes of the bubbles, which may 
become complicated if several bubble volumes have to be merged, possibly with data unknown to a process. The 
key of the concept is to store a handle for each process a bubble resides on, and communicate this data among all 
processes of this bubble. Additionally, information on coalescence with other bubbles, including the name of the 
process that is responsible for the fusion, is stored in the bubble data. With this information distributed, the 
requirements can be fulfilled: For proper detection whether a bubble crosses the boundary, the cell-based bubble ID 
(see Fig. 3) is used. If an unknown ID appears in the halo, data for a bubble has to be received. Likewise, if an ID 
touches the border to a neighbor that is not contained in the process list of this bubble, it has to be sent. At the same 
time, all other processes knowing this bubble have to be informed on the change. Handling merges is more 
complicated. The novel algorithm works with variable number of iterations, depending on the complexity of 
situation. Higher bubble IDs are merged to the lower, and a process responsible to perform a certain merge pair has 
to wait until all higher merges are done. If a merge is performed, all processes that knew one of the involved bubbles 
will be informed on the change. Conflicts can arise if bubble merge information is invalidated by another merge. In 
this case, the algorithm ensures restoration of consistency by rippling messages through the corresponding 
processes. Since MPI library requires an explicit receive issued in order to establish exchange of information, 
processes only passively involved in the merge action (i.e. know bubbles but not perform the merge themselves) 
have to communicate in each iteration until the expected data arrives. More details on this algorithm, including a 
description of its implementation in waLBerla, can be found in [1]. 

Consequently, the novel algorithm possibly means more communication in case of merges. However, this 
communication occurs on a more local vicinity, i.e. the neighborhood of processes harboring the bubbles involved. 
Since merges of bubbles occur rarely (a bubble usually covers the distance of one cell in approx. 1 000 time steps),  
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Fig. 6: Small extract of simulation in fiber geometry similar to gas diffusion layer of a fuel cell. Colors on liquid 
surface depict fill values.

the more complicated merge algorithm is paid off by the performance gain due to the saved all-to-all messages. 
Thus, parallel efficiency benefits by the locality of volume data exchange compared to the all-to-all communication 
in each time step. Figure 4 gives an impression of performance improvement, while Fig. 5 proves that this algorithm 
is suitable for large-scale parallel runs on up to 4 080 cores.

3.  LARGE-SCALE FREE-SURFACE APPLICATIONS 

A recent project with other universities, research institutes, and industry involves the simulation of liquid water in a 
polymer-electrolyte fuel cell (PEFC) with a proton exchange membrane. On the cathode side of the membrane, 
reaction of protons, electrons, and oxygen results in liquid water, which is to be evacuated from the reaction zone to 
sustain electrical performance. Hence, optimization of the structure and properties of the porous membrane is of 
particular interest. Since experiments cannot accomplish reliable quantification of water throughput in relation to 
material parameters due to the micron scales, simulation will assist improvement of process. The gas-diffusion layer 
(GDL) of a PEFC is characterized by a porous structure consisting of many thin fibers. Water generated in the layer 
below this structure has to evacuate towards a flow channel above. Fig. 6 shows a flooding scenario in a similar 
geometry, indicating the suitability of the novel algorithm for large-scale simulations. The simulation shown in Fig. 
6 was carried out on a domain of lattice cells. Final evaluations will be extended to domain sizes of 

lattice cells. Due to nondisclosure agreements, Fig. 6 shows a synthetically generated geometry by random 
placement of fibers, not resembling any characteristics of a true GDL.  

7107.2 ⋅
9105.2 ⋅

8107.7 ⋅Figure 7 shows that the novel algorithm enables finely resolved simulations of many bubbles: A domain of 
lattice cells contains 3 000 rising bubbles of different diameters, consuming approx. 400 GB of memory. 
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Abstract: This study focuses on a few aspects of an on-going project at Jackson State 
University regarding homeland security in the state of Mississippi. The project proposes an 
integrated tool for multi-scale storm surge and overland flow (flood) forecast due to hurricane, 
as well as evaluation of the flood damage on coastal infrastructure including transportation 
systems in the Mississippi coast. Three models are executed in sequence to get all the 
necessary results. Two out of these three codes are extensively parallel to ensure real time 
forecast to deal with the emergency evacuation days before the hurricane strikes the coast. The 
results from the models are fed into Geographical Information Systems (GIS) for visualization, 
analysis and decision-making. 
Keywords: multi-scale hurricane simulation, meteorological data, overland flow, parallel 
computation. 

 

1. INTRODUCTION 

In this study, we present an integrated modelling scheme of a hurricane from its approach to landfall and associated 
water surge and flooding in the coastal regions. Using the most updated meteorological data days before a hurricane 
strikes, the ground wind speed, pressure, rain, etc can be predicted using the open source parallel code Weather 
Research and Forecasting (WRF) [1]. We obtain wind speed and pressure data from WRF, which are used as input 
to another open source parallel code ADvanced CIRCulation (ADCIRC). ADCIRC is a model for oceanic, coastal 
and estuarine waters [3]. We use ADCIRC results to model the coastal area flooding phenomena using our finite 
element method based CaMEL Overland flow solver [3]. The water surge values simulated from ADCIRC along the 
shoreline is used as the Dirichlet boundary condition input to CaMEL Overland. The rain data predicted from WRF 
is used as the source term in this solver. The graphical presentation in Fig. 1 shows the integration of the whole 
simulation process 
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Fig. 1: Graphical representation of our integrated modelling scheme. 

In an actual hurricane case WRF, ADCIRC, and CaMEL Overland codes must be executed in sequence two to three 
days before its landfall, most likely every 6 to 12 hrs. Repeated simulations of the codes are needed because the 
more recent meteorological data we use the better accuracy we obtain from WRF. The accuracy of WRF results 
propagate into ADCIRC and CaMEL Overland simulations through the wind and rain input. Therefore, parallel 
implementation of the codes is absolutely necessary to ensure real time hurricane and flood forecast.  
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As a case study in the present research, we have chosen hurricane Katrina (2005) and its flooding impact on the 
Mississippi coastal region. 

2. MODEL IMPLEMENTATION 

WRF is a parallel model, which is designed to serve both operational forecasting and atmospheric research 
needs. It is suitable for a broad spectrum of applications across scales ranging from meters to thousands of 
kilometers. It allows researchers the ability to conduct simulations reflecting either real data or idealized 
configurations. We have studied the parallel implementation of WRF extensively in our parallel cluster, which has 
Intel Xeon processors and total of 80 cores. The speed up of WRF in our cluster is displayed in Fig. 2 (a). WRF uses 
structured mesh with the option of multiple nested domains. We used a single domain with 300 grid points in east-
west, and 220 grid points in south-north. Each segment was 8 km.   

Using the WRF wind speed and pressure data as input, ocean water surge is simulated using two-dimensional 
depth integrated (2DDI) model of ADCIRC. ADCIRC is a highly developed computer program for solving the 
equations of motion for a moving fluid on a rotating earth. These equations have been formulated using the 
traditional hydrostatic pressure and Boussinesq approximations and have been discretized in space using the finite 
element method and in time using the finite difference method. The water elevation is obtained from the solution of 
the depth-integrated continuity equation in Generalized Wave-Continuity Equation (GWCE) form. The speed up of 
ADCIRC in our parallel cluster is displayed in Fig. 2 (b). The ADCIRC grid used in our simulation is the same as 
Mukai et al. [4], which consists of 254,565 nodes and 492,179 elements. ADCIRC Tidal Database [3], Version 
ec2001_v2d, is used to extract tide data during the Katrina period. Zero-flux boundary conditions are used on the 
land boundary, and tidal conditions are used in the ocean boundary. 

(a) (b) 

Fig. 2: Code speedup with respect to the number of processors in our cluster. (a) WRF, (b) ADCIRC

After the ADCIRC simulation, we model the coastal area water surge phenomena using our CaMEL Overland 
flow code. We have solved diffusive wave or Richard’s equation, as shown in (1), by the Galerkin finite element 
method [3]. The time dependent water surge values simulated from ADCIRC along the shoreline is used as the 
Dirichlet boundary input in the model. The rain data predicted from WRF is used as the source term in the model. 
Since the execution of CaMEL Overland code is very fast, we have not made any attempt to make it parallel yet. 
We, however, will make it parallel soon. 

( ) qhK
t
h

=⋅−
∂
∂

∇∇         (1) 

where, h, K, q  are water elevation, diffusion coefficient, and source terms, respectively. 
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3.  RESULTS AND DISCUSSION 

WRF simulation results heavily depend on the meteorological data. Hurricane may take unexpected turns, 
which only the latest meteorological data may reflect. Hurricane landfall location has a huge impact on ocean water 
surge. Experience suggests that water rises rapidly if the hurricane hits Louisiana coast, most likely due to the 
converging funnel effect of complicated land structure. On the contrary, hurricane hitting the Alabama coast is most 
likely to cause much lesser water surge. The computer modelling done by other researchers suggests that the funnel 
effect in Louisiana area may increase the surge by 20 to 40 percent [5]. This funnel-effect fact is particularly very 
much applicable for Katrina (Aug 23-31, 2005) type hurricanes with twisted track paths.  

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 3: Katrina wind pressure plots (a) WRF simulation starting from Aug 26, 00 A.M., (b) WRF simulation starting 
from Aug 27, 00 A.M., (c) WRF simulation starting from Aug 27, 12 P.M., (d) WRF simulation starting from Aug 29, 
00 A.M., (e) Actual, using Planetary Boundary Layer (PBL) (Aug 23 to Aug 31), (f) Published track path.
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Figure 3 shows the comparison of Katrina simulation and actual track path. Figure 3(a), (b), (c), and (d) show 
the WRF simulated track paths starting from Aug 26 - 00 A.M., Aug 27 - 00 A.M., Aug 27 – 12 P.M., and Aug 29 - 
00 A.M., respectively. Figure 3 (e) shows the actual track path obtained by using the Planetary Boundary Layer 
(PBL). Note that the PBL method interpolates the wind information from the published meteorological data for 
already past events. The published track path of Katrina is shown in Fig. 3 (f). From the comparison with Fig. 3 (e) 
and (f), Fig. 3(a) and (b) show that these WRF simulation were started too early. These landfall locations are 
somewhat east of the actual one. Figure 3(c) appears to have the best result. Although Fig. 3(d) had the latest 
meteorological data, the hurricane was already too close to the land and it appears to subside. WRF seems to work 
best with latest meteorological data, while the hurricane is still at least 24 hr far away from the land. This fact 
underlines the importance of parallel simulation of WRF for quick delivery to facilitate r safe and quick evacuation 
during an actual hurricane. 

Katrina ocean water elevation plots from ADCIRC with different wind speed and pressure input from WRF or 
Planetary Boundary Layer (PBL) are displayed in Fig. 4. Figure 4 (a)-(c) use WRF wind input with different starting 
date and time, while Fig. 4(d) uses actual Katrina wind data provided by PBL. From the comparison of Fig. 4(a) – 
(c) with Fig. 4(d), it is evident that the starting date of WRF simulation has huge impact on the results. It is because 
of the fact that the latest meteorological data in WRF generates more accurate wind speed, pressure, and landfall 
location of hurricane. The impact subsequently is carried to ADCIRC and CaMEL Overland codes. In addition to 
that, ADCIRC simulation has to be done for several days around the hurricane period, typically for 5-7 days, to get 
reasonably good results.  Longer simulation period captures both short and long ocean waves. All the facts 
mentioned above emphasize the importance of parallel implementation of the codes for real time hurricane forecast 
to help effective evacuation.  

(a) (b) 

(c) (d) 
Fig. 4: Comparison of ADCIRC simulation for different (WRF vs. PBL) wind speed and pressure data as input. (a) 
WRF - starting date Aug 26, 2005, 00 hr, (b) WRF - starting date Aug 27, 2005, 00 hr, (c) WRF - starting date Aug 27, 
2005, 12 hr (d) Actual wind data from PBL (Aug 24 to Aug 31).
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Katrina High Water Mark (HWM) simulated from CaMEL Overland code is displayed in Fig. 5 (a). This result 
can be used to predict whether any structure in the domain will be flooded, damaged, or unaffected because of the 
water surge. This is one of the most important information that will help setting up the evacuation plan. This plot is 
generated using PBL wind speed and pressure data without rain source terms. In real forecast scenario we will not 
have the actual PBL data available until the hurricane is over. We, therefore, are in the process of using WRF 
(forecast) data as input in the CaMEL Overland code.  Figure 5(b) shows the comparison of simulated Katrina 
HWM with the observed ones for 32 stations. 

(a) (b) 

Fig. 5: CaMEL Overland model Katrina results. (a)  HWM in the coastal region, (b) Comparison of observed and 
simulated HWM. 

4. CONCLUSIONS 

We have presented an integrated modelling scheme of a hurricane from its approach to landfall and associated water 
surge and flooding in the coastal regions using WRF, ADCIRC, and CaMEL Overland codes.  We have 
demonstrated that repeated simulations of the codes are needed because the more recent meteorological data we use, 
in general, the better accuracy we obtain from WRF. The accuracy of WRF results propagate into ADCIRC and 
CaMEL Overland simulations through the wind and rain input. We have emphasized the importance of parallel 
implementation of the codes to ensure real time hurricane and flood forecast for safe evacuation. 
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Abstract: A novel framework of parallel computing was proposed for inner flows. This 

approach effectively reduces a number of cells to be computed by eliminating non-fluid cells. 

A flow channel is covered by many subdomains that aligns the background Cartesian grid. 

Each subdomain is adjusted such that its workload of computation becomes equal as much as 

possible. Computation results showed us that the proposed approach scaled up to 128 nodes. 

Keywords: Load balance, Partitioning algorithm, scalability  

 

1. INTRODUCTION 

One of the problems associated with using CFD for analyzing complex configurations is grid generation; in this 

context, the energy efficiency and robustness of orthogonal grid method is investigated.  In complex configurations 

in which the scale ratio between the required grid resolution and total calculation space is large, such as industrial 

piping or a biological vascular network, many unnecessary points that are not used in the calculation are included 

leading to a decrease in the efficiency of calculation.  AMR (Adaptive Mesh Refinement)[1, 2] is sometimes used to 

solve these problems and there is excellent software package is already provided[3]; however, in AMR, the mesh 

ratio at the interface at the boundaries of segments is large, and this has a significant effect on calculation accuracy.  

When a high-accuracy scheme, which involves the use of a widely spaced stencil, is used, it should be ensured that 

the width of the mesh comprising the grid is uniform.  Given this background, the authors attempted to improve the 

efficiency of calculations based on an orthogonal uniformly spaced grid by utilizing a bounding box (denoted by 

bbox), that includes only the part of the grid that is required for the calculation, as much as possible and minimizing 

the use of the part that is not used in the calculation.  The proposed approach ensures scalability for parallel 

computation by dividing the calculation space into more than one bbox so that the calculation load of each bbox is 

almost equal.  This discourse describes the basic concept and mounting required for the implementation of parallel 

computation method that is capable of solving the problems described above and demonstrates the effectiveness of 

the proposed method. 

2. PROBLEM ESTABLISHMENT AND GRID GENERATION 

The case of a fluid flowing in a series flow path, as shown in Fig.1, is used to evaluate the effectiveness of the 

proposed method.  However, it should be noted that the applicability of the method is not limited to flow path 

problems.  The grid is created using the following procedure. 

1. Specification of calculation space 

To obtain the calculation space, a bbox that encloses the target object is defined and the global index is 

corresponded to each axis direction.  The width of the grid in each axis direction is the same. 

2. Partition of subdomain 

(1) The configuration size of subdomain d is specified as Md = md x ld x nd for three-dimension. 

(2) The number of cells in each subdomain is set such that it is identical to that in other subdomains as far as 

possible (this remarkably affects the parallel execution performance). 
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(3) It is ensured that the subdomains do not overlap and that each subdomain is always in contact with other 

subdomains. 

 (4) It should be ensured that each subdomain covers either the target geometry or a space separated from the target 

geometry by a specified distance. 

 3. Partition index 

 (1) An evaluation functionis introduced as valid coverage factor εd, which is represented by the ratio between the 

calculated (fluid) cell number of each subdomain and the configured cell number. The configured cell includes the 

nonfluid part. 

(2) Partitioning is considered as an optimization problem for partitioning the area so that the sum of the valid 

coverage factors of each subdomain is maximum. 

 

d=1
np/ fd $ max and d=1

np/ Md $ min .
    (1) 

 

The manner in which a subdomain can be defined such that the calculation load becomes uniform and the valid 

coverage factor attains the maximum value, that is, the manner in which (1) can be optimized, is critical to the 

calculation. 

 

3. SPACE DIVISION 

In order to accomplish the space division of the calculation area, a voxel space for which the configuration is binary 

approximated, as shown in Fig. 2, is chosen.  The voxel approximated by the flow path is defined as a foreground 

voxel, and the structure the bbox of the subdomain is specified such that the foreground voxel is rendered uniform. 

3.1. Problem establishment 

If the total calculation space is defined as V and the voxel space of the foreground in V is defined as f(V), which is 

divided into n subdomains Si (i = 0, ..., n-1) such that the following conditions are satisfied for the problem of space 

division. 

 Si should be divided by planes perpendicular to each coordinate axis. 
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Fig. 1: Definition of a problem and bounding boxes. In this case, eleven subdomains consist a whole computational domain. 
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 No two subdomains should overlap. 

 Si should cover f(V) completely. 

 The number of foreground voxels in all subdomains should be equal. 

In addition to the above conditions, the following nonbinding conditions are also considered. 

(1) Max ( f(Si -ξ)), that is, the foreground voxel of each subdomain, should be as close to ξ, as possible.  ξ will be 

described later. 

(2) The contact area (communications traffic) between the subdomains should be minimized. 

 

                 

Fig. 2: Problem setting and algorithm. Voxelization is performed for a fluid path. The described lines show how to find a 

best cutting plane. 

3.2. Algorithm 

Generally, partitioning problems are resolved by excellent algorithms in METIS[4] or Zoltan[5].  However, it is 

difficult to determine the bbox size and layout simultaneously using those kind of software because they are used to 

divide a given domain. Therefore, we apply a recursive partition based on kD tree as the partition algorithm. The 

voxel space A is divided by any plane (xy, yz, or zx) into two partial spaces (B, C). At this point, the number of 

partitions is set to n and the calculation is performed, as shown below. 

 

f(B):f(C) = m: (n-m) (0 < m < n)     (2) 

 

This procedure is repeated until the value of m recursively becomes unity. Fig. 2 left shows examples of a 

calculation area divided into three parts. In this example, there are 68 foreground voxels.  The parts that should be 

two dimensionally divided by the x plane or y plane are selected using the following equation. 

 

  Eval(p) = min(sum(p)%p, p- sum(p)%p)    (3) 

 

Here, ξ denotes the number of foreground voxels in the target subdomain and is calculated using ξ= f(V)/n. sum(p) 

denotes the sum of foreground voxels from small partition areas.  If ξ= 68/3 ∼ 22 in the example shown in Fig. 2 

right, the optimum partition position is at line 22, and the next optimum point is at line 21.  In the next step, the 

remaining area is divided into two parts.  When the procedure is repeated for the example shown in Fig. 4, line 23 is 
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found to be the optimum partition position.  This is a simple and robust method, and 99% load balance has been 

achieved in the exploratory experiment. 

 

4. EVALUATION OF SEGMENTATION AND CALCULATION RESULTS 

Figure 3 shows a model used for validation, of which voxel size is 209 x 348 x 114 and the total number of voxels is 

8,291,448; further, f(V) = 821,704. In other words, the fluid area to be calculated is approximately 10% of the bbox 

covering the calculation target. This value decreases if the computational grid width (voxel size) decreases. 

In order to evaluate model segmentation equal partitioning was compared with multibox partitioning. Fig. 4 shows 

the bbox with 128 partitions for the test model. It can be confirmed that the number of voxels to be calculated for 

multibox partitioning can be decreased to approximately 27% of that to be calculated for equal partitioning at 128 

partitions. It is believed that the ratio of nonfluid area decreases and approaches the upper limit, approximately 10% 

in this case, as the number of partitions increases. Consequently, the number of computational grid points rapidly 

decreases as the number of nodes increases resulting in a decrease in the calculation time. 

The load balance of the fluid cell of each subdomain is shown in Fig. 5. The different numbers of partitions (2 to 60) 

are considered. This figure shows that 99% or more load balance is achieved.  The computer system used is the 64 

nodes (128 CPUs) of the RSCC system from RIKEN[6], Japan, which comprises 1024 nodes (2048 CPUs).  Fig. 6 

shows the ratio of scalability.   It is found that the scalability of multibox partitioning is greatly improved compared 

to that of referential result of equal partitioning, which is approximately 33 times for 128 nodes. 

 

5. CONCLUSION 

The authors proposed a parallel computation method that shortens the calculation time by analyzing only the flow 

path part effectively and by decreasing the ratio of the nonfluid part; this method can be used to compute the flow 

inside blood vessels or flow paths. Using this method, the effectiveness of parallel computation is improved by 

utilizing several bboxes that include only the necessary calculation area and by optimizing the load balancing of 

each bounding box by using a simple and robust algorithm. It was confirmed that by using this method, the 

calculation time was 20% shorter than that in the case of equal partitioning for up to approximately 128 partitions.  

This proposed method can be modified to comply with the target, which could be communications traffic, 

communication pattern, or ratio of the nonfluid cell. In future studies, the case study will be repeated, and higher 

parallelization will be realized by improving the algorithm for area segmentation. 
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Fig. 3: Test model used for performance evaluation. 

This shape is a water jacket piping inside an engine 

block of an automobile. 

Fig. 4: Comparison of scalability between equal 

partitioning and multibox partitioning. 
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1 Introduction

This paper presents a strategy for porting Computational Mechanics (CM) codes to heterogeneus mul-
ticore processors, specifically Cell/B.E., whose characteristics make them a very appealing architecture
for High Performance CM (HPCM) [3, 4]. The fact is that programming models for these types of pro-
cessors are still in their infancy. Therefore, based on our own experience with such architectures [1],
we introduce in this paper some ideas for re-writting the core parts of a HPCM code in order to take
advantatge of the Cell/B.E. processor. The target code is the Alya System [2], which is a BSC in-house
multiphysics code, capable of running efficiently in thousands of processors of more traditional shared
and distributed memory clusters.

2 The governing equations

HPCM codes are used worldwide to simulate complex problems, where large amounts of total memory
and CPU time are required. A typical complex CM problem is governed by one or more diferential
equations, coupled, non-linear and with transient behaviour. The governing equations are in turn dis-
cretized using a numerical method like Finite Elements, Volumes or Differences, Spectral Methods, etc.
which transform the process of finding a solution of the set of coupled differential equations into solving
a (potentially very large) algebraic system to obtain an approximate solution, of the desired degree of
accuracy. The solution scheme can be either explicit or implicit, according to the effort needed to invert
the system matrix. In the first case, the system matrix is approximated by a diagonal one, which is trivial
to invert. In the second case, the matrix is non-diagonal, which can be inverted using, for instance, effi-
cient iterative methods. Then, explicit schemes are fast per-iteration but a large number of time iterations
are usually needed to reach the desired solution(s). On the other hand, implicit schemes need less time
iterations, but the effort to invert the system matrix could be large. The global turnaround time is what
matters: which scheme is the best, strongly depends on the problem. HPCM parallelization effort must
then be focused in two sections. The first one is common to both strategies and concern the matrix and
right-hand-side computation. The second one, the solver, is exclusive of implicit schemes. In this paper
we present results about the former.

Due to both their generality and complexity, the target equations are the Navier-Stokes ones for two
kinds of regimes: incompressible and compressible flows. These equations present similar terms, such
as convection, diffusion or reaction. They are strongly non-linear and show transient behaviour. In
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both regimes, additional quantities can transported by coupling to Navier-Stokes equations, wich will
be governed in time by their own convection-diffusion-reaction set of equations. For that reason, the
choice of Navier-Stokes equations is a very reasonable one as a starting point to port an established
HPCM code to Cell/B.E. In this paper we present preliminary results of the strategy applied to a scalar
convection-diffusion-reaction equation with the same kind of terms of the Navier-Stokes’.

Leaving aside some technicalities, an integral form of the equations is the base of well-known nu-
merical methods like FE or FV. Although in this paper we choose FE, most of the discussion can be
related to other methods. If these equations are discretized in space using FEM, the system matrix and
right-hand-side will be assembled by looping over one of the following choices: elements, faces, edges
or nodes. Let us choose the elements as looping units. Before going ahead with the porting strategy, the
next section briefly describes the Alya System.

3 The Alya System HPCM code

The Alya System is a HPCM code with two main features. First, it is specifically designed for running
with the highest efficiency standards in large scale supercomputing facilities. Second, it is capable of
solving different physics, each one with its own modelization characteristics, in a coupled way. Both
main features are intimately related, meaning that all complex coupled problems solved by Alya must
retain the efficiency. Among the problems it solves are: Convection-Diffusion-Reaction, Incompressible
Flows, Compressible Flows, Turbulence, Bi-Phasic Flows and free surface, Excitable Media, Acoustics,
Thermal Flow, Quantum Mechanics (TDFT) and Solid Mechanics (Large strain). By specifically de-
signed we mean that Alya is designed from scratch so as to program in a flexible yet clear way every
kind of CM model to run on parallel computers. That is to say that Alya was not originally a sequen-
tial code which was parallelized afterwards, but designed to be so from scratch. For more information,
please visit BSC’s CASE Department site [2] and the follow Alya related links.

4 Porting Alya System to Cell/B.E.

In this section, we present the Cell/B.E. architecture, the proposed porting strategy and the preliminary
performance results.

Each Cell Broadband Engine (Cell/B.E.) processor (Figure 1.Left) on a QS22 blade, sports a general-
purpose 64-bit PowerPC-type Power Processor Element (PPE), which has a traditional cache hierarchy.
Eight Synergistic Processing Elements (SPE) are connected to the PPE. The SPEs have a 128-bit wide
Single Instruction Multiple Data (SIMD) instruction set, which allows them to process simultaneously
four single-precision and two double-precision floating-point operands. Furthermore, the SPEs have
software-based scratchpad memories called Local Stores (LS). Detailed hardware specifications are re-
ported in Table 1.

The main difference between generic multicores and the Cell/B.E. architecture is the low latency
memory hierarchy. The latter architecture forces the developer to manually manage memory transfers
to/from the main memory and LS. Along with this, the following are the characteristics of the Cell/B.E.
that we concentrated the most on, during the Alya porting:

1. penalty due to mispredictions of logic branches is very expensive in this architecture, thus reducing
control-flow code is mandatory.

2. There are no latency differences in reading and writing from the LS due to its implementation as
conventional registers in a processor.

3. To use SIMD instruction, data is required to be aligned and padded properly.
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Figure 1: Left: functional block diagram of the Cell/B.E. processor. Right: Alya porting workload
schedule scheme.

Blade JS21 Type 8844 QS22 Type 0793

Processors PowerPC 970MP Cell/B.E.
Sockets x cores 2 × 2 2 × (1 PPE + 8 SPEs)
Memory per blade (Gbytes) 8 8
Clock Frequency (GHz) 2.3 3.2
SIMD width 128 bit (SP) 128 bit (SP/DP)
Cache memory

L1 (data + instr) 32k + 64k 32k + 32k
L2 1M per core 512k per PPE

Scratchpad memory — 256k per SPE

Table 1: Technical specifications of all the systems employed in our experiments.

Given the above characteristics, we will in the next section present an initial implementation strategy
for porting an HPCM code like Alya to the Cell/B.E. processor.

4.1 Porting Strategy

The general idea is twofold, to assign the most computational intensive tasks to the SPEs, due to their
computing capacity, and to distribute the tasks among the 8 SPEs in a work balanced fashion. Therefore,
we have to identify opportunities within Alya’s main control flow structure (Algorithm 1) where to apply
our porting strategy. The natural parallel structure in Alya is the elemental loop. This loop is composed
by five tasks (lines 5 to 9 of the Algorithm 1). Some of these task are suitable to be ported to the
SPE, this based on complexity and computational demand. The tasks on lines 6, 7 and 8 are our initial
porting targets. On the other hand, the tasks on lines 5 and 9 of the algorithm are strongly tied to data
management, and then not suitable for porting to the SPEs. This is due to the complexity of the explicit
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memory management.

Algorithm 1 General control flow structure of Alya. Computational cost for each task are included,
these costs are evaluated for a certain case, case detailed in the next subsection

1: { Time loop }
2: for t = 0 to timeend do
3: { Elements loop }
4: for ielem = 0 to nelem do
5: Gathering and coefficients (3.5%)
6: Isoparametric and cartesian derivatives (36.5%)
7: Variables at the gauss points of the element (18%)
8: Build elemental matrix and rhs (33.5%)
9: Assembly elemental matrix and rhs (8.5%)

10: end for
11: Solver (Implicit/Explicit)
12: end for

Data management is a central concern for Alya porting because CM codes that follow FE or FV
methods have sparse data structures, coming from graphs of elements and nodes of unstructured space
discretizations. The SPEs access to main memory is operated by Direct Memory Access (DMA) lists,
which means out-of-cpu and no-coherent control memory read/writes. Sparse data structures are not
suitable for SPE mapping, mainly due to two reasons: the DMA list transfers have to access non-
contiguous data, causing that each DMA list have to be computed, and the computation of each DMA
list involves integer operations (offset and lengths), which are less efficient on the SPEs than SIMD
operations.

We propose two different strategies to tackle the data management problem. This strategies are
focused to solve the problem for task 6, 7 and 8, but can be general used for other similar purposes. In
the first strategy the PPE gathers data into a sequential buffer, thus avoiding the expensive DMA lists
computation, then the SPEs access the sequential buffer using a static DMA list. Second strategy, the
PPE precomputes the DMA lists, and subsequently transfers the lists to the SPEs. Then, the SPEs use
the precomputed DMA lists to fetch the data. When SPEs computation is finished, the first strategy
implies that the SPEs transfer back data to the sequencial buffer and then the PPE scather data to the
natural location. The second strategy involve transfers back the results to main memory, and no further
action by the PPE.

The strategies comparison criteria are computing, communication and implementation effort, where
the former are more important than the latter. The first strategy is expensive in computing (data gath-
er/scather at every time step) but cheap in communication (just two transfer at every time step) and
implementation effort. The second strategy is expensive in communication (many transfers) and im-
plementation effort (DMA lists computation for sparse data), but it is cheap in computing terms, the
computation of the DMA lists is cheaper than the gather/scather process. With no clear winner both
strategies are explored as data management solutions. Figure 1.Right shows an overview of the first
porting strategy schedule scheme.

It is important to notice that our implementation is fully SIMDized for the Cell/B.E. architecture to
fully exploit the SPEs capacity.

4.2 Performance Evaluation

The following results show the performance of task 6 and 8, which represent 36.5% and 33.5% respec-
tively of the total execution time of the elemental loop (Algorithm 1). The addition of these two task
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represent the main part of the execution time, thus performance improvements on these tasks give us a
good idea of what will be the performance improvement of the whole code.

The computational cost of each task is evaluated through a test on a 3D canal mesh computed on
Alya HPCM code, where 1000 tri-linear hexaedral elements (8 nodes and 8 gauss points per element)
were processed. The test case involves the solution of a heat equation, and it was repeatedly executed in
order to obtain reliable tasks cost information.

Task JS21 QS22
line Time [ms] Time [ms] Speed-up
6 10.04 0.76 13.21
8 9.22 1.25 7.37

Table 2: Performance results for JS21 and QS22. These results were obtained with IBM XL Compilers
for Multi-core Acceleration. Notice that only one chip per blade was used during the experiments

Table 2 resumes the performance results. Task 6 is 13.2x and task 8 is 7.37x times faster in QS22
than in the classical multicore architecture JS21. The projected performance improvement for Alya is
10.6x, which matches with our previous experiences [1] on mapping high performance scientific kernels
to Cell/B.E. achitecture. The performance gains are basically explained by the implementation of a fully
SIMDized code, and the parallel processing achieved by the 8 SPEs of the Cell/B.E. processor.

5 Conclusions and Future Work

This paper presents results on porting a general purpose HPCM code to an heterogeneus multicore
like Cell/B.E. We focus first on the matrix and right-hand-side assemblies. Then the porting strategy
is discussed and assessed through speed-up figures, which are indeed very promising. The next steps
are (1), to explore the best data management strategy solution (2), to extend a similar approach to the
solver part of the code and (3), to extend it to different Alya System’s modules to solve other Physical
problems, like solid mechanics or excitable media.
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Abstract: This paper discusses data formats to represent large volumetric datasets. We claim 
that XML-based formats associated with binary formats are appropriate to this scenario 
because of the self-descriptive nature of XML. Thus, XML files can describe the structure of 
the binary files, which improves data handling by applications. This also improves 
interoperability and allows queries to be posed over data.  
Keywords: XDMF, Large Volumetric Data Sets, Data Formats. 



1. INTRODUCTION 

It is well known that High Performance Computing (HPC) applications deal with large volumes of data, 
which has increased significantly over time. Such large amounts of data are hard to handle, especially in 
what concerns moving them from one site to another so they can be used by different applications (flow 
solvers, visualization, etc.). Time spent in moving data through the network could be prohibitive, and then 
researchers and application developers are trying their best to avoid this as much as possible [11]. To 
solve this problem, besides developing new access methods and tools, it is essential that data is 
represented and stored in a way that contributes to this. It has to be, at the same time, compact and self-
descriptive, so that no much effort is put to access it. In this paper, we investigate the issue of representing 
and storing large parallel datasets.  

Our main motivation to investigate this issue is data interoperability among several applications for the 
simulation of oil and gas problems in the Galileo Network, an alliance of five Universities in Brazil 
developing innovative parallel applications to face new exploration and production challenges in the 
recently discovered pre-salt areas in ultra deep waters (2,000s meters) southeast of Brazil. These new 
parallel applications encompass simulation software for computational solid, fluid and structural 
mechanics that have to share data. Therefore, besides improving data movement between different 
applications, data formats should enable data interoperability. 

There are several ways to represent and store data. HPC applications usually use binary and compressed 
data provided by libraries such as netCDF, HDF5, ExodusII. They are efficient, but difficult to 
interoperate among different programs. One of the limitations is its lack of descriptive information on its 
binary data. Even after finding the required data, accessing it is not simple. This access might be different 
for each program that interoperates with the binary data. Ross et al. [11] share our point when they say 
―High-level libraries such as HDF5 and Parallel netCDF have been developed to provide more natural 
and efficient interfaces when used properly, but adopting these interfaces is a time consuming task, and 
even with these libraries significant tuning is often necessary‖. Additionally, parallel simulation 
applications that use these formats usually require several input files, one for each solution variable, time 
step and process. For large scale parallel problems, managing the volume and number of files can be 
prohibitive: several operating systems have difficulties in dealing with many of files in the same 
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directory. This is thus one more issue that needs to be addressed when choosing a data format. 

Text-based formats like XML are self descriptive and flexible but are often taken aside, since they are too 
verbose and would largely increase the size of the data set, just making things worse. However, the self-
description of XML can add consistency, reliability among other desired features to HPC applications. 
With this in mind, we investigated existing XML-based data formats for HPC applications, and found 
three main ones: VTK/XML [14], XDMF [1] and XDTM [10]. 

VTK/XML files can be of two types: structured (for topologically regular datasets such as arrays of pixels 
or voxels) and unstructured (for topologically irregular sets of points and cells). However, this format 
does not allow storing heavy data in separate binary files. It encodes all binary data using a Base64 
scheme in order to not violate the XML standard. XDTM, on the other hand, has no predefined schema, 
and thus each application can define their own. The idea is to map XML types into a physical 
representation. Applications would deal with XML types directly, thus avoiding the difficulties of 
accessing binary data. The problem of this approach is the need to re-implement applications and no 
uniformity between schemas. XDMF, on the other hand, classifies data as light and heavy according to 
the amount of information it represents. Light data is allowed to be stored in the XDMF file's body 
following the XDMF DTD rules while heavy data is stored in HDF5 format and described in the XDMF 
file. This approach takes advantage of the XML proposal for a self described data without producing large 
XML files. XDMF is currently supported by VTK and consequently Paraview and Vislt.  

In this work, we present a case study for the XDMF file format in a parallel finite element simulation for 
a natural convection problem. This problem is a simplified model problem for complex viscous flow and 
temperature phenomena occurring in salt tectonics [7]. Velocity, pressure and temperature data for several 
time steps were represented in XDMF and HDF5 for visualization with ParaView. The remainder of this 
paper is structured as follows. Section 2 presents XDMF in more details. Section 3 presents a case study 
with XDMF. Finally, Section 4 concludes and discusses future work. 

2. XML AND LARGE VOLUMETRIC DATASETS 

XDMF stores light data directly in XML format, while heavy data is described in XML but actually 
stored in HDF5 files. HDF5 alone is not enough, since it is not self-descriptive. The advantage of using 
XDMF together with HDF5 is that the structure is explicitly represented in the XDMF file, thus making 
access much easier. In summary, an XDMF file is composed of one or more Domain. Domains are 
composed of Grids, each of which represents a collection of homogeneous elements. Each Grid can have 
temporal data (Time), other Grids, descriptions of the data organization (Topology), XYZ mesh values 
(Geometry) and mesh values (Attribute). Data itself is stored in lower level elements called DataItem. 
There is also a special element called Information that can store application specific data.  

When HDF5 files are used, DataItem points to positions inside the HDF5 files where data is actually 
stored. Figure 1 shows an example of XDMF file that points to different portions of an HDF5 file. The 
example is truncated due to space restrictions, but the following lines repeat the same block pointing to 
other HDF5 files. Notice that, despite the use of HDF5 the metadata information is explicit in the XDMF 
file. This makes data access much easier. Moreover, this example demonstrates the concept of spatial 
collections. Spatial collections can be employed to assemble different geometrical parts of the 
computational grid. Note that, when working in a domain decomposition context, the domain is spatially 
partitioned in smaller pieces and individually assigned to MPI processes. In this sense, the XDMF spatial 
collection is employed to recover the non-partitioned geometrical model. Alternatively, spatial collections 
could be used to distinguish different geometrical parts of the same model in a serial or parallel run. In 
this way, a car model could be understood as a collection of spatial parts representing the car doors, tires, 
wind shield and so on. 

Another desirable concept in scientific file formats is the ability to represent transient data. In XDMF this 
is accomplished by the use of ―temporal collections‖. In Figure 2 we may observe that a ―temporal 
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collection‖ is used to list which XDMF file corresponds to each time value. Moreover, in this example, 
each time step is stored in a different XDMF ―spatial collection‖ file, as previously described and shown 
in Figure 1, and referenced by the use of <xi:include href="..."/> clauses. It gives rise to a file 
arrangement corresponding to a ―temporal collection of spatial collections‖. Note that, in practice, several 
possibilities in terms of data storage and arrangements could be made without losing portability and 
readability across different software and systems. Actually, this is one of the main XML goals and 
naturally present in XDMF format. 
<XDMF xmlns:xi="http://www.w3.org/2001/XInclude" Version="2.0"> 
  <Domain Name="EdgeCFD"> 
    <Grid Name="foo_00000" GridType="Collection" CollectionType="Spatial"> 
      <Time TimeType="Single" Value="0.00"/> 
      <!-- GRID FOR THE FIRST PARALLEL (SUB)DOMAIN --> 
      <Grid Name="foo_000" GridType="Uniform"> 
        <!-- MESH INCIDENCE --> 
        <Topology Type="Tetrahedron" NumberOfElements="   296882 " BaseOffset="1"> 
          <DataItem Dimensions="1187528 " NumberType="Int" Format="HDF">foo_000_00000.h5:/incid</DataItem> 
        </Topology> 
        <!-- NODAL COORDINATES --> 
        <Geometry Type="XYZ"> 
          <DataItem Dimensions="1472283" NumberType="Float" Precision="8" Format="HDF"> 
                   foo_000_00000.h5:/coords</DataItem> 
        </Geometry> 
        <!-- TRUNCATED LINES --> 
      </Grid> 
      <!-- GRID FOR THE SECOND PARALLEL SUBDOMAIN --> 
      ... 
   <!-- TRUNCATED LINES --> 
   </Grid> 
  </Domain> 
</XDMF> 

Fig. 1: XDMF for a spatial collection (file foo_00000.xmf). 
<XDMF xmlns:xi="http://www.w3.org/2001/XInclude" Version="2.0"> 
   <Domain Name="EdgeCFD"> 
      <Grid GridType="Collection" CollectionType="Temporal"> 
         <Time Type="Single" Value="0.00"/> 
         <xi:include href="foo_00000.xmf" xpointer="xpointer(//XDMF/Domain/Grid)" /> 
         <Time Type="Single" Value="0.01"/> 
         <xi:include href="foo_00001.xmf" xpointer="xpointer(//XDMF/Domain/Grid)" /> 
      <!-- TRUNCATED LINES --> 
      </Grid> 
   </Domain> 
</XDMF> 

Fig. 2: XDMF example for a temporal collection (file foo.xmf). 

3. CASE STUDY 

The case study presented in this work employs the EdgeCFD software. It is a parallel Fortran90 finite 
element code for coupled Navier-Stokes and transport problems. EdgeCFD features stabilized and 
variational multiscale finite element formulations. EdgeCFD is being used for Newtonian and non-
Newtonian fluid flows, free-surface flow simulations with interface tracking approaches (volume-of-
fluid/level sets), gravity currents and turbulence [see 7 and references therein]. The two equations are 
solved by a staggered approach. In this software, most of the computational cost comes from the u-p 
coupled solution of the incompressible flow equations while the cheaper part is due to the transport 
equation. Time integration is a predictor-multicorrector algorithm with adaptive timestepping [11]. 
Within the flow solution loop, the multi-correction steps correspond to the Inexact-Newton method as 
described in [3]. As a linear solver, EdgeCFD employs the Generalized Minimal Residual Method 
(GMRES) since both equation systems, stemming from the incompressible flow and transport, are non-
symmetric. Furthermore, a nodal block-diagonal and diagonal preconditioner are used respectively for 
flow and transport. Most of the computational effort spent in the solution phase is devoted to matrix-
vector products. In order to compute such operations more efficiently, we have used an edge-based data 
structure as detailed by Elias et al [3]. This data structure reduces indirect memory access, memory 
requirements to hold the coefficients of the stiffness matrices and the number of floating point operations 
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when compared to other data structures. The computations are performed using the message passing 
interface library (MPI). The parallel partitions are generated by Metis/ParMetis library, while the 
information regarding the edges of the computational grid is obtained from the EdgePack library [2]. 
EdgePack also reorders nodes, edges and elements to improve data locality, exploiting efficiently the 
memory hierarchy of current processors.  

 

 

Fig. 3. Iso-temperature contour plots for the three-
dimensional Rayleigh-Benard problem. 

Fig.4. EdgeCFD parallel performance on 128 cores of 
SGI Altix ICE cluster. 

A case study of 3D Rayleigh–Benard convection has been carried out to investigate the XDMF use in a 
large scale simulation. The benchmark corresponds to a rectangular 3D domain of aspect ratio 4:1:1 
aligned with the Cartesian axes and subjected to a temperature gradient [4]. Simulations are made on a 
501×125×125 mesh, resulting in 39,140,625 tetrahedral elements using an edge-based SUPG scheme with 
pressure stabilization. A converged stationary solution, shown in Figure 3, shows the convective rolls 
obtained at Rayleigh number Ra=30,000 and Prandt number Pr=0.71.This solution was obtained on 128 
cores of a SGI Altix ICE 8200 cluster with a fixed time step. Every time step we solve, by the Inexact 
Newton method, two nonlinear systems of equations, for flow and temperature, respectively with 31M 
and 7.8M equations.  

Code performance has been profiled using TAU on 50 time steps. The three-dimensional execution 
profile is shown in Figure 4. We may observe the excellent load distribution by the uniform size of the 
CPU time bars. In this case we used non-blocking point-to-point communication between subdomains. It 
is worth to emphasize that most of the time is spent in parallel DAXPY BLAS primitives (red bar), which 
does not involve communication. It indicates that the same problem could be run in much more CPUs 
without losing scalability.  

Following the XDMF concepts, in this case study the heavy information (nodal coordinates, element 
incidence, pressure, temperature and velocity nodal solution) is hierarchically stored in HDF5 files while 
all information required to access the HDF5 files (number of elements and nodes) are stored in XDMF 
files. Moreover, each process stores its own solution temporal collection as described in Section 2, while 
rank 0 creates the spatial collection to collect all subdomain data. With this arrangement, the solution is 
rendered and visualized using ParaView in a client-server scheme. The system used for the solution 
process and rendering is the SGI Altix ICE cluster, with no special graphics hardware. In other words, the 
visualization is off-screen rendered by the SGI Altix ICE numerical processors using the Mesa library, 
connected to a ParaView client session. The number of files generated in this XDMF scheme (spatial 
collection of temporal collections)  is proportional to the number of processors and transient output 
frequency as well and can be computed by the formula  1 1f s pn n n   , where 

fn , sn  and 
pn  are the 

number of files, time steps saved (output frequency) and processors respectively. Consequently, for a run 
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using 128 processors storing 15 time steps are created a total of 1,936 files. Clearly, for a large number of 
saved time steps and processor counts, the number of files can be very large. With our solution however, 
handling large number of files poses no difficulty at all. 

4.  CONCLUDING REMARKS 

In this paper, we discussed the advantages of using an XML-based format to represent data in HPC 
applications. In this case study heavy information is hierarchically stored in HDF5 files while all 
information required to access the HDF5 files are stored in XDMF files following the XML standard, thus 
allowing flexibility, interoperability between different applications, self-description and easy-of-access. 
However, several other advantages can be foreseen when data is represented in XML. In our case study, 
XDMF allowed a significant reduction on the number of generated files. Additionally, generating XDMF 
files from our simulator was trivial. We just added some code, but no real change was needed. This code 
extension has also been included in other simulators we have. XDMF has all data types to support CFD 
applications and all our solvers now share the same valid schema. Note though that any other application 
using VTK can benefit from our solution.  

On the other hand, as we generate more XML documents sharing the same schema we can proceed to 
submit XML queries that would return "all files that have n NodesPerElement" or "files use Tetrahedron 
as topology type". The discussion of proper formats for visualization of volumetric datasets is far from 
reaching an end. There are several other formats being proposed [6], and no standard yet. Furthermore, 
depending on the available resources and/or problem size, the end-to-end approach of Tu et al [10], where 
no intermediate results from simulations are saved, may be preferable.  
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Abstract: In this study, we present the impact of high performance computing in the 
development of advanced environmentally-clean coal-based power generation technologies 
using MFIX, an open source computational fluid dynamics code. MFIX is a legacy code with 
over two decades of development towards state-of-the-art models for simulating coal 
gasification, which was recognized for its uniqueness with a 2007 R&D 100 award. The 
computational algorithm involves iterative solution of twenty-two nonlinearly coupled 
conservation equations at each time step. We present how open source scientific software 
could be used to achieve high-fidelity simulations to address industrial scale problems by 
reducing the computational time, using high performance computing platforms so that the 
results can be incorporated in the design cycle. In order to take advantage of the modern high 
performance computing platforms, a number of improvements were implemented. Preliminary 
results show that hybrid mode operation can yield substantial improvement in time-to-solution 
when utilizing thousands of multi-core processors. We expect our experiences and lessons 
learnt to date would be valuable for other groups using legacy codes.  
Keywords: Reactive multiphase flows, industrial scale simulation, fluidization, gasifier model, 
open source scientific simulation, high performance scientific computing, hybrid MPI and 
OpenMP parallelization. 

1. INTRODUCTION 

Environmentally benign energy production is a vital need throughout the world. Meeting the growing demand for 
clean energy is arguably the most important problem that the world faces today, since the availability of reasonably 
priced energy is critical to maintaining living standards in the developed world and raising standards of living across 
the developing world.  In the United States, energy demand in recent decades has outpaced the energy supply. 
Currently, the US imports 60 % of its petroleum, and imports of natural gas are increasing. Moreover, the rising and 
volatile prices of petroleum and natural gas threaten the economy. The global demand for energy is also rising 
rapidly, caused by worldwide growth, particularly in developing countries like China and India. The world energy 
needs are projected to double in the next 30 years and triple by end of the century. Coal is plentiful in the United 
States, and is currently used to generate more than half of our electric power. Coal-based electric power generation 
is projected to increase to 156 GW by 2030, which implies the need for significant number of additional full-scale 
power plants. Coal is a potential source of energy, both in the United States and around the world, not only for 
future electric power needs, but also as a source of liquid fuels, a substitute for natural gas, a source of chemicals 
and, possibly, hydrogen in the future.  

Advanced technologies must be developed to use coal cleanly, while improving conversion efficiency, and reducing 
carbon emissions. However, coal-fired power plants concatenate complex unit-operation such as feed systems, 
gasifiers and combustors of various designs, gas cleanup systems, heat exchangers. These are extremely difficult to 
interrogate experimentally in detail. Their design is based on experience-based, empirical correlations, which allow 
only incremental change. Computational tools based on physical principles, such as conservation of mass and 
momentum, offer an alternative approach to more costly experimental tools. However, current commercially 
available simulation codes are not accurate enough to be the only design tool, and furthermore, the demand for 
computational resources to perform realistic simulations in an acceptable timeframe is significant. 
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Coal gasification is one of the major technologies that are expected to become the centrepiece of tomorrow's green 
power plants. Coal gasifiers convert coal into a synthesis gas, a mixture of H2 and CO, which can be cleanly and 
efficiently converted into power in an Integrated Gasification Combined Cycle (IGCC) process, and the process is 
amenable for CO2 sequestration to virtually eliminate the adverse impact of coal on global warming. In addition, the 
synthesis gas can be converted into transportation fuels or raw materials for chemical or fertilizer manufacture. The 
U.S. Department of Energy (DOE) is sponsoring a broad research and demonstration program to improve the 
efficiency, reliability, and feedstock flexibility of gasification systems. To help with the design and troubleshooting 
of such systems, engineers at the DOE's National Energy Technology Laboratory (NETL) have developed and 
validated a high-fidelity gasifier model, MFIX. 

The insight into the flow field and chemical species and temperature distribution in the gasifier provided by this 
high-fidelity computational fluid dynamics (CFD) model helps engineers to evaluate different designs and operating 
scenarios. Usually, such models are used as stand-alone models for evaluating the performance of a single piece of 
equipment in a unit operation. But CFD models are beginning to be integrated into process simulation models for the 
entire power plant so that engineers can evaluate the impact of a change in the equipment design on the overall 
process performance [9]. To ensure that the application of these models is predictive and that they are routinely used 
in process design, it is crucial that the models are accurate and the time-to-solution cycle time is short. 

In this paper, we describe the preliminary results obtained from the improvement of the parallel performance of a 
coal gasifier model based on an open-source computational fluid dynamics code. A substantial improvement was 
accomplished by taking advantage of the hybrid MPI and OpenMP mode of operation on a massively parallel multi-
core platform, to address the challenge of achieving high fidelity simulations while also reducing the computational 
time, so that the results can be incorporated in the design cycle. 

2. PHYSICAL PROBLEM DESCRIPTION 

The transport gasifier, the physical system being modelled in this project, is a vertical tubular reactor (see Figure 1) 
in which solids (coal and coal-char) and gases undergo chemical changes as they flow upwards. The design of such 
gas-solids multiphase flow reactors is challenging because of the large spatio-temporal variation of the solids 
distribution in the reactor. Furthermore, the high temperature and pressure in the gasifier and the opacity caused by 
the walls in addition to the solids make detailed experimental measurements or visualization of the flow fields in the 
gasifier virtually impossible. Prior work at NETL has demonstrated that the use of a detailed model can provide 
useful and sometimes unexpected but highly valuable insights to the designers [5]. 

Fig. 1: MFIX simulation of pilot scale transport integrated gasifier at Wilsonville, Alabama, C. Guenther, NETL 
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3.  THE MFIX CODE 

MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose simulation software for modelling the 
flow dynamics, heat transfer and chemical reactions primarily for gas-solids systems [4], [8]. The state-of-the-art 
technical significance and uniqueness of MFIX in modelling complex multiphase flows was recently recognized 
with the 2006 Federal Laboratory Consortium (FLC) Mid-Atlantic Region Tech-transfer award and 2007 R&D 100 
award. More recently a multiyear Innovative and Novel Computational Impact on Theory and Experiment (INCITE) 
program award of DOE was granted to NETL to perform high fidelity simulations of transport gasifier at scales that 
will be used in commercial plant designs. This tool has been developed primarily at NETL, and released as open-
source software in 2001. MFIX has an active international user community of over 1500 users consisting of CFD 
experts and computational scientists from federal research laboratories, universities and industry, who contribute to 
the software development [7]. The code is written in Fortran 90 using modern constructs. 

MFIX is capable of shared memory and distributed memory parallelization through either OpenMP or MPI in a 
unified solver framework [1]. It is also capable of leveraging hybrid shared/distributed memory architectures for 
hybrid parallelism [2]. Shared memory parallelism (SMP) is obtained using portable OpenMP directives. Distributed 
memory parallelism (DMP) uses flexible and user-determined domain decomposition in all three spatial dimensions. 
The MPI communication library is encapsulated in a suite of Fortran modules. These modules provide capabilities 
such as updating the overlapped region, array dot product, and array gather/scatter for I/O operations transparent to 
the solver modules. Furthermore, the MPI implementation has been optimized over several years by including 
various techniques such as pre-computing the communication schedule, to allow for packing the messages, 
minimize any global operations and reusing it as the grid or processor mapping are static. It has a variety of inbuilt 
iterative linear solvers and can also take advantage of highly scalable high performance linear solver libraries such 
as Hypre. The code has been ported to various modern high performance computing architectures, ranging from 
Cray XT4, IBM Blue Gene/P to Linux clusters built with commonly used interconnect networks such as Gigabit, 
and Infiniband. 

A typical gasifier CFD model considers two or more interpenetrating phases and solves conservation equations for 
mass, momentum, energy, and species mass fractions for each of these phases. The equations describing different 
phases are tightly coupled because of the interphase exchange of mass, momentum and energy. In addition, the 
stiffness in the system comes from stiff chemical equations and large variation of the stresses in the solids. MFIX is 
uniquely suited for simulating multiphase flow problems with a strong coupling between the heavily loaded fluid-
particle hydrodynamics, heat transfer and chemical reactions. MFIX provides two approaches for solving transient 
gas-solids multiphase flow problems encountered in gasifiers: (1) Discrete Element Method (DEM) (also referred to 
as Eulerian-Lagrangian model); (2) Continuum model (also referred to as Eulerian-Eulerian or Two-fluid Model). 
The gasifier model presented here is based on the continuum approach, which obviates the need for tracking billions 
of particles and, therefore, is cost-effective for simulating large-scale, gas-solids flows. In the recent past, MFIX has 
been used for simulating several challenging multiphase flow problems such as bubbling, spouted and circulating 
fluidized beds [[6] ,[3]]. More details on the code can be found at the MFIX web site (www.mfix.org). 

The strong coupling between the hydrodynamics and complex coal gasification and combustion kinetics are handled 
in the MFIX gasifier model using the patent pending Carbonaceous Chemistry for Continuum Modelling Module 
(C3M). The C3M was developed at NETL and received a 2008 FLC National Tech-transfer award. The MFIX 
gasifier model has been validated by conducting 3D simulations of the Transport Integrated Gasifier (TRIG) from 
the Power System Development Facility (PSDF) in Wilsonville, Alabama. The PSDF is a DOE demonstration plant 
for advanced electric-power technologies, and the TRIG is based on circulating fluidized-bed technology that can 
operate as a coal gasifier. In this plant-sized technology (the reactor unit is 80 feet tall) coal and recycled material 
feed into the lower part of the gasifier, called the mixing zone, where the coal combusts at high temperature and 
pressure. Hot gas and unburnt solids rise from the mixing zone into the riser. At the top of the riser, unburnt solids 
are collected and fed back into the bottom of the mixing zone. Eventually, coal is converted to gas with nearly 100 
% efficiency. 

4.  PERFORMANCE IMPROVEMENTS & PRELIMINARY RESULTS OF HYBRID MODE OPERATION 

To improve the performance of MFIX on today's massively parallel multi-core high performance computers such as 
Cray XT series, various optimizations and improvements were incorporated in several phases. Phase 1 
improvements were geared towards optimization without any code change, i.e., determining the best set of compiler 
flags or MPI environment variables for the batch job. Phase 2 improvements were algorithmic changes, such as 



227

21st International Conference on Parallel Computational Fluid Dynamics

reducing the number of MPI_AllReduce calls in the linear equation solver, reducing residual calculations, etc. 
Furthermore, the compiler was changed from Portland Group to PathScale during Phase 2 improvements based on 
independent benchmarks conducted between two compilers. 

Phase 3 improvements were based on the extension of a past study to explore parallel performance of MFIX when 
hybrid shared memory parallel (SMP) and distributed memory parallel (DMP) execution is employed on shared 
memory multiprocessor systems [2].  

Prior to the DMP version of MFIX, an SMP version was developed by manually inserting portable OpenMP 
directives around the DO-loops in the most time consuming routines in MFIX (approximately 62 locations 
throughout the code). Due to the limitations in scalability with the SMP mode, the DMP mode of execution, which 
is based on MPI message-passing library, was routinely used for jobs with large number of processors. In the study 
of Pannala et al. [2], “one thread per MPI task, one MPI task per processor” was determined to give the best 
performance with the parallel computer architectures used at that time (e.g., IBM SPs). This observation was 
consistent with previous hybrid parallelization efforts on somewhat similar architectures. One of the reasons was 
attributed to the fact that thread creation/destruction is very expensive on the systems employed at that time, which 
were also single core processor based systems. 

The basic idea for this improvement phase was to exploit shared memory parallelism within the cores on the 
compute node and distributed memory parallelism across the nodes of Cray XT4 platform at National Center for 
Computational Sciences (NCCS). This approach was not possible on the early Cray XT platforms due to lack of 
multithread support on the compute nodes. However, with the upgrade to compute node kernel (CNL) and 
installation of supporting compilers, hybrid mode operation, i.e., MPI and multithreaded OpenMP instructions 
became a possibility. 

Profiling information based on TAU and CrayPAT profiles suggested that apart from the MPI time, significant 
amount of time is spent in linear equation solver routines, i.e., leq_iksweep and leq_matvec. To isolate the impact of 
most time consuming routines, out of 62 DO-loop related OpenMP directives that were implemented for SMP mode 
of operation, only those in the above listed two subroutines were enabled for OpenMP supported compilation and 
testing on the Cray XT4. Testing for determining the gains for the remaining OpenMP directives is under progress. 

Table 1 shows the results obtained from the actual production runs for the 10 million cell resolution transport 
gasifier model on 2064 cores. A sampling size of eight batch job run sessions were used to obtain the average 
simulated time per session (last column). The maximum duration for each batch job session was 12 hours of wall 
clock time due to the queue limitations for the requested number of cores. As seen from the results, employing 1028 
MPI processes and 2 threads per process performed nearly 2.5 times better than employing 2064 cores of MPI 
processes standalone with single thread when the simulated time duration for the gasifier is considered for the same 
problem, i.e., on average the simulation progressed for 0.18 seconds at the end of 12 hour run for 2064 cores of MPI 
processes only, whereas the simulation running in hybrid mode progresses 0.47 seconds at the end of the same 
duration. 

Table 1:  Comparison of simulated times for MPI only and hybrid MPI + OpenMP mode of operation on Cray 

XT4 at NCCS 

 # of MPI 
cores

# of threads Avg. simulated 
time/12 hr job (sec) 

MPI only 2064 1 0.18  
MPI + OpenMP 1032 2 0.47 

Increasing the number of cores per compute node requires different strategies and algorithmic changes to take 
advantage of the new high performance computing platforms effectively. Testing is under progress to determine the 
performance characteristics with higher number of threads and MPI processes. Furthermore, to better understand the 
observed improvement in performance, additional performance profiling is being performed to compare the 
profiling results of both modes of operation. 

Through these approaches we plan to improve the parallel performance of the code further and reduce the time-to-
solution by making the best use of the leadership computing resources. We also plan to extend the MFIX numerical 
algorithm to allow variable grid size for use with higher order discretizations. This addition will give us the ability to 
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further improve the resolution and thus accuracy at the locations of interest without increasing the number of grid 
points significantly. 

5. SUMMARY AND CONCLUSIONS 

In this study we have illustrated how an open source computational fluid dynamics code could be effectively used in 
the design of an industrial scale coal gasifier by employing large-scale computational resources. Due to the 
complexity of the governing physics involved, accuracy and fast turnaround time to solution are the two critical and 
competing factors in the successful application of computational models to full scale engineering problems. To 
address both of these key issues MFIX, which has one of the most sophisticated models for multiphase flows, was  
utilized in hybrid mode by employing domain decomposition through message-passing across the nodes and  
OpenMP directives based do-loop parallelization within the nodes. This improvement has enabled MFIX to be used 
for high-fidelity transient simulations that requires over several million computational cells and tens-of-thousands 
time steps. It is impossible to conduct such simulations on serial machines or even on small clusters because of 
memory limitations and unacceptably high turnaround time. Such high-fidelity simulations are critical for making 
substantial improvements in the design of next-generation power plants. 

The preliminary results on Cray XT4 supercomputer at NCCS shows that nearly 2.5 fold improvement can be 
achieved in the simulated time for the same duration of job execution when hybrid MPI and OpenMP directives 
based multithreading is employed. Further investigation to determine the trade-off between number of threads and 
number of MPI processes for a given problem configuration and grid resolution is under progress. 
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Abstract: In the past 1 1
2 years, the authors have been working on an object-oriented framework for

the discontinuous Galerkin (spectral element) method, with a strong aim on CFD applications. This
library was programmed in C# for Microsoft .NET and Mono framework. Up to our knowledge, it’s
the first ambitious CFD code which was implemented using the .NET framework.

Section 1 gives a brief overview of features, library layout and current implementation status. Within
the 2nd section, we discuss the advantages which we gain from using a managed platform. The 3rd

section compares the performance of C# (and Java) - programs to "classical" languages, discusses
performance pitfalls in managed platforms and concludes with some performance measurements on
our code. In section 4, we discuss how non-.NET libraries (C or FORTRAN libraries) can be called
from C# and we conclude with a parallel scalability study in section 5.

Keywords: Software Frameworks, Parallel Software Development;

1 DESIGN GOALS OF THE LIBRARY

Within the last 10 years, the discontinuous Galerkin method (DG) ([3], [9], [8] ), sometimes also referred to as spectral
element method, has become very popular for solving hyperbolic conservation laws, especially in computational fluid
dynamics ([5], [10]), and is recently strongly emerging in incompressible CFD ([4], [6]).

As our institution is heavily active in combustion and turbulence modeling, modularity, expandability and scalability
are central design goals for the library. Hence, the library is designed to model arbitrary systems of the form

cγ ·
∂
∂ t

uγ = div
�

fγ (x,U)+Lγ (x)U+ν(x) ·∇GγU
�

+qγ(x,U)+Wγ(x)U, γ = 1, . . . ,Γ

where U = (u1, . . . ,uΓ) denotes the vector of unknowns, x ∈ R
D and cγ ∈ {0,1}. Actual, the library supports spatial

dimensions D ∈ {1,2,3} with both, structured and unstructured grids. Each equation of the system can contain nonlin-
ear fluxes fγ and sources qγ , as well as linear fluxes Lγ and sources Wγ . The term ν(x) ·∇GγU can be used to discretize
some linear equations with derivatives of second order (e.g. the Poisson equation) directly, i.e. without breaking them
up into a system of first order equations.

The user provides the components of the equation above as well as Riemann solvers for the flux components fγ , Lγ
and Gγ by implementing interfaces defined by the library. For the linear components, the code is able to construct
sparse matrices automatically from the analytical functions which are provided by the user.

Additionally, there is a parallel database system for storing, loading and organizing the data which is produced by
the numerical methods. Of course, the code is MPI parallelized, and it is capable of handling arbitrary repartitioning
of the grid (load balancing), which can come e.g. from external libraries like ParMETIS ([12]). Large parts of the
quadrature kernel are vectorized in a way that can be described as "multiple instruction - multiple data". We are able
to run the code on Linux and Windows machines/clusters.

Currently, we are able to get first results of the full incompressible Navier-Stokes - solver.

2 ADVANTAGES OF MANAGED PLATFORMS

The major difference between so-called managed languages like Java or C# and "classical" programming languages
is that the first ones are compiled to use a runtime Environment (the .NET framework for C# or the Java runtime)
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Figure 1: Incompressible Navier Stokes, Channel Flow around obstacle; Grid of 874× 279 cells, Reynolds number
1000; Pressure distribution and streamtraces; Timestep No. 2331, Physical Time t = 1.289;

which does not only deliver an extensive runtime library but also runtime services like garbage collection, runtime-
type-information and serialization.

Usually, for software projects which are done on Universities or similar institutions, manpower is the most limited
resource. We have found that the usage of a managed language together with a comprehensive toolchain (an Integrated
Development Environment) is speeding up our workflow compared to the "classical" development environment (text
editor, shell, makefile).

One thing found very nice with our code is the fact that it is platform independent on a binary level. This means that
once we have the .NET runtime (on Unix systems the compatible Mono runtime [14]) and some native libraries (e.g.
BLAS, MPI, LAPACK, HYPRE [13]) installed on some cluster or supercomputer,we can directly copy and run the
executables from our local development workstations.

We further also use some essential technologies of .NET, which cannot be found in classical languages: Serialization
is the process of packing an arbitrary graph of objects into an continuous block of memory, which can be streamed
either to hard disk or via MPI to another process. As with multi-purpose codes data structures may get complex,
serialization proofed to be a big help, for File IO and parallelization and general interprocess communication.

A wide range of programming errors (e.g. buffer overflow) that usually occur during FORTRAN of C development,
are prevented by the design of the .NET runtime. Memory leaks like in C, when allocated heap memory isn’t freed
cannot occur in .NET. A so-called garbage collector keeps track of all heap objects, and frees them if they aren’t
referenced by the application anymore and if memory is needed. Furthermore, the garbage collector is also capable of
compacting the heap.

3 MANAGED PLATFORMS AND PERFORMANCE

It is a popular fallacy that C# (or Java) is not suitable for High Performance Computing, because it is an interpreted
language. This is not the case. The output of the C#-compiler is so-called Common Intermediate Language (CLI),
looking much like an assembler program plus metadata to represent object oriented structures. At load time, this CLI
code is transformed to native-machine code.

Since the first JIT-versions of Java have been available, various authors have made performance comparisons between
C and Java (e.g. [7] and [2], just to mention two of them). These investigations concluded that Java, when properly
used, is suitable for high performance computing. When .NET was released, it’s performance was and is continuously
compared to Java (e.g. [1]). C#, in contrast to Java, further has the option to declare specific regions of the code
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as unsafe. Within these sections, runtime security features (like array bounds - checking) are turned of, and pointer
arithmetics like in C is allowed.

The - by our knowledge - most comprehensive benchmarks (including LINPACK and SciMark) were done in [11]. We
also performed some benchmarks on basic algorithms (naive DGEMM and the Sieve of Eratosthenes).

DGEMM, N = 1000 Sieve of Eratosthenes, p < 2 ·107

C#, Debug, .NET 3.5 29.8 sec 39.6 sec
C#, Release, .NET 3.5 16.7 sec 37.6 sec
C#, Release, Mono 2.2 34.9 sec 38.9 sec
C#, unsafe code, .NET 3.5 9.8 sec 37.7 sec
C#, unsafe code, Mono 2.2 12.4 sec 39.5 sec
C, MinGW-gcc 3.4.5 16.8 sec 30.3 sec
C, MinGW-gcc 3.4.5 -O3 9.8 sec 20.9 sec
C, MS-cl 15.00.21022.08 15.5 sec 26.8 sec
C, MS-cl 15.00.21022.08 /O2 9.7 sec 37.6 sec
ACML-BLAS 4.1.0 1.28 sec n.a.

System: Pentium 4 (Prescott), 3GHz, Windows XP service pack 3

From our own test and benchmarks done by others we reason that...

• Optimized binary libraries from hardware vendors are usually superior to naive implementations build by any
compiler.

• LINPACK and SciMark show that classical languages are still faster, but not by much - especially for the
LINPACK case (see [11]).

• The performance loss of using a managed language in the worst cases is about 50%. Wether that really happens
in real-world applications is uncertain.

• Overall, Java and .NET provide equal performances. On some algorithms, there may be a big gap.
• It’s difficult to find proper benchmarks, because more complex algorithms cannot be translated one-by-one from

C# to C or vice versa.
• Unsafe code performs very often head-to-head with state-of-the-art C compilers.
• Especially Mono seems to profit a lot from using unsafe code.
• Although we may expect a performance loss in the range of 20 to 40%, the advantages in development outbal-

ance the performance loss.
• Data, on which performance-critical algorithms work on, should be organized in arrays of value types. Complex

graphs of heap objects should be avoided.
• Performance-critical sections should be "vectorized", i.e. implemented as multiple instruction-multiple data.

Loops should be preferred to multiple function calls, i.e. the stack should be kept shallow. This opens the
possibility to optimize the code with unsafe sections.

4 ON THE USAGE OF EXTERNAL LIBRARIES

From our point of view, there are three reasons for using native code in .NET applications for supercomputers: First,
the need for near-system libraries like MPI, which are not available (natively) in the .NET runtime library. Second,
the use of complex mathematical libraries like sparse solvers, which would be too much work to re-implement them in
C#. And third, the need for performance. As shown above, a DGEMM operation from an optimized library is superior
by nearly a magnitude of 10 to naive implementations in any programming language.

The standart way of using native code in C# is called P/Invoke. Native code is compiled/linked into a shared library
(.dll - files in Windows, .so - file on Unix) and within the C#-code, a function prototype together with an attribute
that points to the shared library, is defined. P/Invoke marshalles the managed objects to the unmanaged code. The
most important thing is to prevent the garbage collector (which may run at any time in it’s own thread) from moving
the base address of some object while an unmanaged function accesses it. This "looking" of objects for the garbage
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collector is referred to as pinning. For standart function calls, which take some input data and process some output,
pinning is performed automatically by P/Invoke.

Besides that, there are some function calls that require that pinning continues for some time after they return - e.g.
nonblocking MPI calls like MPI_Irecv. In .NET, it’s relatively easy to control pinning manually, which isn’t possible
in Java.

5 PARALLEL PERFORMANCE AND SCALING

Parallel speedup was measured on a benchmark which simulates scalar advection in a given flow field in 3D. Two
experiments were made, one with constant problem size and one with growing problem size. Except for the 1- and
2-processor tests, all processes but "first" and "last" one have to communicate with two neighbors. Therefore, the
runtime of the 4-processor-test was taken as the basis to calculate the speedup of the other tests.

The test was carried out on a 64-processor cluster, organized in 8 nodes with two quad core Opteron processors at 2
Ghz and Gigabit Ethernet interconnect.

# of Procs Runtime [sec] # of Nodes Speedup Parallel Efficiency
2 36371 1 2.03 1.01
4 18422 1 4 1
8 9877 1 7.46 0.93

12 6606 2 11.15 0.93
16 4897 3 15.05 0.94
24 3318 4 22.21 0.93
32 2559 5 28.8 0.9
48 1765 7 41.75 0.87

Parallel speedup of a benchmark with constant problem size. Grid is 960×9×19 cells.

As expected, the speedup of a test with constant problem size is limited, because the ratio between communication and
calculation gets worse with increasing processors. The number of cells to exchange stays constant (342 cells to send
and receive for each process) and e.g. for the 4-processor test, there are 41040 cells on each processor to calculate.
For 48 processors, the number of cells per processor drops down to 3420.

# of Procs Runtime [sec] # of Nodes Speedup Parallel Efficiency
1 1496 1 1.15 1.149
2 1693 1 2.03 1.015
4 1719 1 4.00 1
8 1759 2 7.82 0.977

12 1725 2 11.96 0.997
16 1742 3 15.79 0.987
24 1787 4 3.09 0.962
32 1788 5 30.77 0.961
48 1786 7 46.20 0.962
56 1776 8 54.20 0.968

Parallel speedup of a benchmark with growing problem size. Grid is 20 ·nProc×9×19 cells. (Speedup should be
understood as runtime in comparison to the extrapolated runtime form the 4-processor test.)

Within the test above, we see a significant performance drop between 8 and 24 processors, beyond that point the
parallel efficiency seems to remain constant. Wether this is a result of hardware "saturation" (e.g. the network switch)
or results from the algorithm has to be determined by test on clusters with better interconnect and more processors. It
is clear, that for 1 processor, where communication is turned off, the speedup in comparison to 4 processors is greater
than 1.0.
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Figure 2: Parallel efficiency versus number of processors. (left side: constant size problem, right side: growing size
problem)
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Abstract:  Breakthoughs in science will require ever increasing computer performance. But 

lack of efficient programming models and physical constraints such as power consumption are 

challenges that must be overcome to achieve petascale computing and beyond. IBM is 

addressing these challenges with a multi-dimensional approach, exemplified by the high-

productivity Blue Waters system, the energy-efficient Blue Gene, and hybrid computing 

systems such as the “Roadrunner” project for Los Alamos National Laboratory. 
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1. INTRODUCTION 

Petascale computing holds the promise of breakthroughs in all fields of science and engineering[7]: aircraft 

manufacturers will be able to better model full aircraft and create more fuel efficient and quiet designs; biologists 

will be able to better simulate protein structure, leading to advances in disease control; the automobile industry will 

be able to explore the detailed chemistry and physics of turbulent flames, allowing improved engine design; weather 

and climate simulations will be able to use high enough resolution and more detailed models of chemical and 

physical processes to allow reliable predictions on a regional scale. But many challenges lie on the road to and 

beyond sustained petascale computing, among them: supplying and paying for the power required to run petascale 

computers and finding efficient ways to program systems that have 100,000 and more cores. 

Several approaches are evolving to address these challenges, although they are sometimes at odds with each other. 

One way to address power efficiency is to construct systems from smaller, relatively slower processors [1]. The 

lower clock speed greatly reduces power consumption, but many more processors are required to achieve a 

particular level of performance. Alternatively, one may employ accelerators such as the PowerXCell 8i [6] or 

general purpose graphical processing units (GPGPUs) along with a general purpose microprocessor [4]. Since 

accelerators only contain hardware for specialized processing, they can achieve performance per watt figures an 

order of magnitude better than general purpose processors. But constructing systems from homogeneous cores with 

high single-thread performance tends to make the programming challenges less onerous since it preserves familiar 

programming models and minimizes the cost of sequential code sections. As a result there may be no single 

approach that is best in all situations. 

IBM has long been a leader in high performance computing (HPC) and several announcements in the past year 

exemplify the multi-dimensional approach IBM is taking to addressing the challenges to petascale computing: 

• The Los Alamos National Laboratory (LANL) “Roadrunner” system: the first machine to achieve one 

petaflop 

• The Blue Waters High Productivity Computing System 

• The “Dawn” and “Sequoia” systems for Advanced Simulation and Computing (ASC) at Lawrence 

Livermore National Laboratory (LLNL) 

These systems employ different approaches to address the challenges facing petascale computing. Dawn and 

Sequoia, like their predecessor Blue Gene/L, use slower, homogeneous cores, but achieve high system performance 

with the highest number of cores. Roadrunner uses heterogeneous cores, PowerXCell 8i accelerators, and multiple, 

hybrid programming models to maximize flops per watt. Blue Waters emphasizes high productivity computing with 

homogeneous cores and maximum single core performance.  
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Scaling applications to take full advantage of these systems is a challenge. But early experience has shown that it is 

possible and exceptional results have been achieved. In the sections that follow, we will describe each of these 

systems and some of the approaches used in scaling applications on them. 

2. BLUE GENE/L, DAWN, SEQUOIA 

In February of this year, The DOE’s National Nuclear Security Administration (NNSA) announced that IBM had 

been selected to design and build two new supercomputers to continue the work of the NNSA’s Stockpile 

Stewardship program currently carried out on the ASC Purple and Blue Gene/L systems at LLNL. Dawn, the first of 

the two systems, is a 500 teraflop system based on IBM’s Blue Gene/P technology and is scheduled for delivery 

early this year. Sequoia, which will be based on future IBM technology, will exceed 20 petaflops of performance, 

employ 98,304 nodes in 96 racks with 1.6 terabytes of memory, and put 1.6 million cores to work in unison. It is 

scheduled for delivery in 2011, with operational deployment in 2012. 

Scaling applications on such systems will no doubt be a challenge. But their architecture, based on many low-power, 

homogeneous cores, has the advantage of being able to build on the experience and successes achieved on their 

predecessor, Blue Gene/L [1]. Using that system—which at the time contained 128k cores and had a peak speed of 

367 teraflops—scientists at LLNL garnered Gordon Bell peak performance prizes in 2005 and 2006. And with the 

system expanded to 208k cores, anther LLNL team won the 2007 Gordon Bell prize [3]. 

In the first of these efforts, the molecular dynamics code ddcMD was used to simulate solidification in molten 

tantalum and quenched uranium, achieving a sustained performance of 101.7 teraflops [8,9]. In order to scale 

efficiently on massively parallel systems such as Blue Gene/L, ddcMD was designed to use a particle-based 

decomposition rather than the spatial decomposition traditionally used in MD codes. As a result of this novel 

approach, simulations were able to scale to the full machine with less than 1% of the run time spent in 

communications. Load imbalance at 128k cores was measured at 7%. Although not enough to significantly impact 

scaling at this processor count, it did suggest that adding dynamic load balancing to the code would be required to 

scale to significantly larger systems. Other keys to scalability were managing data files intelligently (one file per 

task or one file per job do not perform well due to metadata and bandwidth issues) and making sure that processor 

and/or domain logic did not scale badly. (We note that in other ports to Blue Gene/L, we have observed O(N
3
) 

algorithms lurking in codes that had previously been observed to scale well on large Linux clusters.) 

For the 2006 Gordon Bell award, Gygi et al. [5] used the first principles molecular dynamics code Qbox to simulate 

high-Z metallic systems, achieving 207 teraflops. Qbox was designed to scale well on massively parallel systems. It 

maintains good load balance via an efficient data layout and careful management of data flow. Its calculations, 

however, are not a natural fit for the 3D torus interconnection network on Blue Gene/L. To optimize performance 

the Qbox team carefully studied the code’s communications patterns and found that the best performance was 

achieved with either a bipartite (when running on subsets of the machine) or quadpartite (for the full machine) 

mapping of tasks to Blue Gene/L cores. The difference in going from the default mapping to the best mapping 

improved the code’s performance by a factor of 1.67. 

Other outstanding results have been obtained for a wide variety or applications on Blue Gene/L [2]. As above, they 

found that keys to good scaling included proper mapping of tasks to the cores, and optimizing interprocessor 

communication, particularly when involving all-to-all operations. 

3. ROADRUNNER 

Built by IBM for the NNSA and LANL, Roadrunner is the world’s first hybrid supercomputer[11]. It consists of 

6,912 dual-core Opteron processors with 12,960 PowerXCell 8i accelerators and an InfiniBand network. It made 

worldwide headlines in June 2008 when it became the first computer to break the 1 petaflop barrier. The Opteron 

processors alone would make this a formidable Linux cluster with a peak processing rate of 50 teraflops. But it is the 

PowerXCell 8i processors, with a combined peak of 1.3 petaflops that add real power to the system. And that power 

is efficient as Roadrunner is near the top of the Green500’s list of most energy efficient supercomputers. 
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Each PowerXCell 8i processor consists of 9 cores: a Power Processing Element (PPE) that runs Linux, and 8 

Synergistic Processing Elements (SPEs) to carry out number-crunching. In total, there are over 130,000 cores in the 

system.  Running applications efficiently on any system with that many cores is going to be a challenge. But with a 

hybrid architecture (and even the Cell processors have a hybrid architecture), how do you run applications on this 

machine? 

There are several programming models used on Roadrunner [11]: A host-centric model starts with the application 

split across the hosts (Opterons) like any other Linux cluster. The PowerXCell 8is are then used to offload and 

accelerate portions of the work. This was the model initially used in the port of SPaSM (Scalable Parallel Short-

range Molecular Dynamics) [10]. This is an attractive programming model in that it allows an evolutionary approach 

to porting. In the case of SPaSM, the force calculation was offloaded to the Cell processors, leaving the rest of the 

calculations and MPI communications on the hosts. This worked well enough, achieving 100 teraflops. But by 

redesigning the code to run mainly on the Cells, with the Opterons handling only the message passing, the code was 

converted to an accelerator-centric programming model. That change improved the performance by more than a 

factor of three to 369 teraflops. Other programming model variants are possible as well. For example, an 

asynchronous “work-stealing” version of the host-centric model has been used for the Monte Carlo code Milagro. 

The unifying theme, though, is that for best performance, fully understanding the code and being willing to redesign 

it to efficiently use the computing resources is recommended to achieve the best performance. In a tutorial on 

moving scientific simulation codes to Roadrunner [12], Woodward et al. advocate converting codes to a stream 

processing paradigm and avoiding global communication.  

4. BLUE WATERS 

Blue Waters [7] is a collaboration between the University of Illinois at Urbana-Champaign and its National Center 

for Supercomputing Applications (NCSA), IBM, and the Great Lakes Consortium for Petascale Computing 

(GLCPC), funded by a grant from the National Science Foundation, to build a sustained petaflop computational 

system dedicated to open scientific research. 

The system is based on the IBM POWER7 processor and will contain 200,000+ cores. It will have 1 petabyte of 

globally addressable main memory, 10 petabytes of disk storage, half an exebyte of archival storage and up to 400 

Gbps external connectivity. The goal of sustaining a petaflop on applications spanning a wide range of scientific 

disciplines led to the design choices to maximize single core performance, in order to keep the total core count down 

and minimize the cost of poorly scaling code sections, and provide a large, global, high-bandwidth memory system 

to efficiently solve memory-intensive problems. 

While fast cores, memory and interconnect hardware will help with some of the challenges in scaling applications to 

a machine of this size, issues with algorithmic scalability, load imbalance, etc. will be addressed via three 

interconnected efforts: 1) The Consulting Office will provide consulting services to help researchers port and tune 

their codes for Blue Waters. 2) Petascale Application Collaboration Teams (PACTs) will be assembled to work 

closely with developers of specific applications to optimize them and resolve problems in scaling them to petaflop 

performance levels. 3) Application Development Workshops will be held twice a year to train researchers how to 

develop codes that will run efficiently on Blue Waters. In addition, software projects at UIUC and IBM to produce 

tools for developing scalable code on Blue Waters will be tightly coupled with these three efforts. 
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Abstract: We study the performance of three CFD applications—CART3D, OVERFLOW, and 

USM3D—on two quad-core based SGI Altix ICE supercomputers and compare with their 

performance on an SGI Altix 4700 system. We find that the quad-core systems pose significant 

challenges in terms of cache size and memory bandwidth. However, when we compare 

performance in a way that attempts to compensate for large differences in cost, the quad-core 

systems can be the most cost-effective. 
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1. INTRODUCTION 

One strategy used in the design of high-end computers is to take advantage of economies of scale by using 

commodity parts such as microprocessors. While resulting systems typically have very high peak performance 

compared to other machines in the same price range, they pose challenges for programmers. In particular, 

improvements at the core level have not been matched by gains in the performance of the memory hierarchy and 

interconnect. Furthermore, these components are shared among several cores, leading to contention issues, 

especially with many CFD codes that stress the memory hierarchy. In this paper we investigate how commodity 

component architecture affects performance in CFD codes. In particular, we investigate the performance of three 

codes on three high-end computing systems available at the NASA Advanced Supercomputing (NAS) facility at the 

Ames Research Center. Two of the systems are SGI Altix ICE systems based on Intel Xeon quad-core processors. 

The third system is an SGI Altix 4700 shared memory system that uses Intel Itanium dual-core processors. Our three 

CFD applications are: CART3D, a code solving the inviscid flow equations using adaptively refined Cartesian grids; 

OVERFLOW, a Reynolds-averaged Navier-Stokes solver employing overlapping structured grids; and USM3D, a 

Reynolds-averaged Navier-Stokes solver based on unstructured tetrahedral grids. We begin with a description of the 

target platforms and then discuss the performance of the codes on these architectures. 

2. EXPERIMENTAL ENVIRONMENT 

In this section, we describe the experimental environment for this study including a brief overview of the three 

systems used in this study. Further details of the systems can be found at the NAS website [1]. 

Two of the parallel systems used in this study are part of the Pleiades supercomputer, an SGI Altix ICE system 

located at NASA Ames Research Center. Pleiades comprises 6400 nodes interconnected with InfiniBand in a 

hypercube topology. All but 512 nodes contain two quad-core Intel Xeon E5472 processors (Harpertown, 3.0 GHz), 

while the remaining nodes (also known as RTJones) use two quad-core Intel XeonX5355 processors (Clovertown, 

2.66 GHz). This makes a total of 51,200 cores in the whole system. A block diagram of a Pleiades node is shown in 

Figure 1(a). Each Harpertown and Clovertown processor has a pair of L2 caches that are each shared by two cores; 

the two processor types also have a similar bus-based architecture. Compared to Clovertown, Harpertown has a 

faster clock speed, a larger L2 cache, and a faster front-side bus (FSB) speed. Both Pleiades and RTJones utilize 

InfiniBand in a hypercube topology to interconnect the nodes. However, Pleiades uses newer technology and hence 

has higher bandwidth and lower latency inter-node communication. In most Pleiades nodes, the eight cores share 

8GB of memory. However, 64 nodes (512 cores) have double the memory, sharing 16 GB across 8 cores.  
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The Columbia system is a cluster of SGI Altix nodes interconnected via NUMALink4 (NL4) and InfiniBand. In this 

paper, we focus on one node of Columbia: C24, an SGI Altix 4700 with 512 Intel dual-core Itanium2 Montvale 

chips at 1.67 GHz. Each of the 1024 cores has access to 256KB of L2 data cache, 9 MB of L3 cache and 2 TB of 

globally addressable memory. The system uses SGI's NUMALink4 technology to interconnect the cores. A block 

diagram of a C24 blade is shown in Figure 1(b). 

On the ICE systems, the eight cores share resources including caches, memory, memory bandwidth and also access 

to the interconnection network. On these systems, the user can choose the number of active cores per chip to be used 

in a run. Leaving some cores idle reduces memory contention for the remaining active cores, as well as avoiding 

cache sharing with neighboring cores. This feature allows the user in effect to “dial” in the performance on the 

cluster to optimize time to solution or minimize cost by running somewhat longer on fewer cores. 

In the rest of the paper, we designate runs as “Nppn" when we are using N processes per node. Thus, 8ppn is a fully 

populated run while 4ppn and 2ppn leave 4 and 6 cores idle respectively. In the latter two configurations, we have 

utilized a core configuration that minimizes sharing of resources. Specifically, in 4ppn mode the processes were 

placed so that each process had exclusive access to an L2 cache (i.e., no cache sharing), and in 2ppn mode that 

processes were placed so that each process had exclusive access to an L2 cache and a pathway to memory (i.e., no 

cache sharing and no bandwidth sharing). Note that to run a P-process job in 4ppn mode requires double the number 

of nodes required in 8ppn mode. 

All applications discussed in this paper were compiled using the Intel compiler and the SGI message passing library, 

MPT.  The MPT library has many environment variables.  Two of these, MPI_BUFS_PER_HOST and 

MPI_BUFS_PER_PROC, control the number of buffers used for inter- and intra-node communication. Larger 

values of these variables can improve communication speed by reducing time spent waiting for buffers. However, 

extra memory for the MPI library can result in insufficient memory for the application, and balancing memory for 

the MPI library and for the application has an impact on application performance as discussed in the sections below. 

In the next three sections, we detail the performance of three CFD codes—CART3D, OVERFLOW, and USM3D—

on the three systems described. In each section, we start with a description of the code and the test dataset being run. 

We then present the raw timings for the configurations of interest on each platform. Finally, each section then 

analyzes how the different architectures affect the performance of that particular code. As part of this analysis, we 

attempt to account for large cost differences among the systems. In particular, we present graphs where application 

performance is compared on a socket-per-socket—rather than core-per-core—basis. To a rough approximation, this 

levels the playing field by comparing the aggregate performance of a quad-core Xeon processor to that of a dual-

core Itanium processor. The graphs plot the time per socket for runs on Pleiades and RTJones relative to that on C24 

versus the number of sockets used - a value greater than one implies C24 performs better than the other system. 

3.  CART3D 

CART3D is a simulation package targeted at conceptual and preliminary design of aerospace vehicles with complex 

geometry [2]. The flow simulation module solves the Euler equations governing inviscid flow of a compressible 

fluid. CART3D’s solver module uses a second-order cell-centered, finite-volume upwind spatial discretization 

combined with a multigrid accelerated Runge-Kutta scheme for advance to steady-state. CART3D uses a variety of 

techniques to enhance its efficiency on distributed parallel machines. It uses multigrid for convergence acceleration 

and employs a domain-decomposition strategy for subdividing the global solution of the governing equations among 

the many processors of a parallel machine. 

  

 Figure 1:  (a) Block diagram of Pleiades (RTJones) node with two Harpertown (Clovertown) processors 

(b) Block diagram of Columbia C24 blade with two Itanium2 Montvale processors 
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CART3D takes advantage of the hierarchical nesting of adaptively refined Cartesian meshes and uses techniques 

based upon a Space-Filling-Curve (SFC) for reordering of the adapted meshes. The locality properties of the SFC 

ordering are such that a good partitioning strategy is to simply distribute different segments of the SFC among the 

various processors. All meshes in the hierarchy are partitioned independently using the same SFC. This implies that 

although there will be generally very good overlap between corresponding fine and coarse partitions, they are not 

perfectly nested. While most of the communication for multigrid restriction and prolongation in a particular 

subdomain will take place within the same local memory, these operators will incur some degree of off-processor 

communication as well. This approach favors balancing the workload on each mesh in the hierarchy at the possible 

expense of increased communication.  

For large datasets, CART3D is CPU and memory bound. Due to the underlying unstructured mesh and the resultant 

indirect addressing, the code is inherently less cache friendly than codes utilizing structured meshes, however the 

use of SFC greatly improves data locality. The test case used in this study, SSLV, consists of 24M cells and models 

a launch configuration of the Space Shuttle.  

In Table 1, we compare the time in seconds 

required per cycle of the code across the 

different architectures; this excludes 

initialization and I/O time. The blank spaces in 

the table denote runs that could not be 

performed due to insufficient memory to 

execute the code. CART3D scales well on all 

the machines--even superlinearly in many 

cases. This is due to increased total cache and 

memory bandwidth as processor counts go up. 

Cache size also explains how a slower-clocked 

C24 can often outperform the ICE platforms. 

The runs on the big memory nodes (16 GB/node) of Pleiades scale nearly linearly and performance is more than 

30% better than those on the small memory nodes of Pleiades. This is due to allocating more memory for the MPI 

library for buffering (through the environment variables MPI_BUFS_PER_PROC and MPI_BUFS_PER_HOST). 

Although we don’t include the numbers in Table 1, if we use the extra memory on the 4ppn runs on the 8GB nodes 

for MPI buffers, we see similar timings to those for 4ppn runs on 16 GB nodes. The runs on the larger memory 

nodes of Pleiades were uniformly faster than those on C24 even on a per-core basis.  

Comparing the 8ppn to the 4ppn results on Pleiades shows that there can be a significant boost in performance by 

leaving every other core idle (using the extra memory for the MPI library). The 4ppn-16GB/node runs on Pleiades 

are about 1.5 times faster than the 8ppn runs. There seem to be four advantages when 4ppn is used: cache per active 

core is doubled, memory bandwidth is doubled, the ratio of ports to cores is also doubled decreasing the congestion 

for inter-node communication, and the memory for the MPI 

library can be increased. 

Figure 2 shows scaling plots of CART3D on the three 

parallel systems as the number of sockets used is increased. 

As seen in the figure, C24 outperforms 4ppn runs on 

RTJones for the whole range of sockets, and C24 

outperforms some of the RTJones 8ppn and Pleiades 4ppn 

cases for smaller numbers of sockets.  However, all the 

Pleiades cases with 8ppn, all the Pleiades cases with 4ppn-

16GB/node, and the Pleiades 4ppn-8GB/node cases with 64 

and 128 sockets outperform C24.  The 4ppn-16GB/node and 

8ppn-16GB/node runs on Pleiades are nearly 1.6x and 2x 

faster than on C24, respectively. 

4.  OVERFLOW 

OVERFLOW is a general-purpose Navier-Stokes solver for CFD problems [3]. The code uses an overset grid 

methodology to perform flow simulations in complex geometric configurations. Body-fitted, logically Cartesian 

meshes are generated to conform to solid surfaces. These grids are allowed to overlap in an arbitrary fashion. 

Table 1: CART3D Time per cycle (secs) 

RTJones Pleiades 

8 GB/node 8 GB/node 16 GB/node 
No. of  

Processes 
C24 

8ppn 4ppn 8ppn 4ppn 8ppn 4ppn 

32 18.20 40.89 26.56  21.28 14.87 10.11 

64 9.03 20.08 13.05 14.92 9.98 8.14 5.44 

128 4.80 8.49 6.20 6.21 4.68 4.20 2.78 

256 2.46  3.01  2.19 2.13 1.38 

512 1.36   1.73     1.03   

 

 
Figure 2:  Relative performance of CART3D  
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OVERFLOW uses finite differences in space and implicit time 

stepping, with a variety of options for the spatial differencing 

and for the approximate solution of the large systems that 

result from implicit time stepping. 

The code originated in the heyday of vector machines and the 

coding style of striving for vectorization has been generally 

maintained as the code has evolved. Many subroutines of the 

code operate on arrays in a memory-to-memory fashion, where 

some small unit of computation is applied to all elements of an 

array. Profiling of OVERFLOW often shows a small ratio of 

floating-point operations to memory accesses, and the code 

tends to be limited by cache size and processor-to-memory bandwidth, not by CPU clock speed. 

The test case used in this study, “DLRF6”, is a large wing/body/nacelle/pylon test case with 23 zones and 36 million 

grid points. Table 2 presents the average time per step in seconds (so lower is better) across the three architectures.  

In all cases the MPI library environment variables MPI_BUFS_PER_HOST and MPI_BUFS_PER_PROC could be 

set to large enough values so that the results are not affected by retries in the MPI library. 

The Altix system, C24, has more cache per core, followed by 

Pleiades and RTJones, so for fully populated runs (8ppn on 

Pleiades and RTJones), C24 performs best, followed by 

Pleiades and RTJones. Superlinear convergence can be seen 

for RTJones and Pleiades, due to increased total cache size and 

less contention for memory bandwidth. For the 4ppn runs on 

Pleiades and RTJones performance improves markedly 

(sometimes by more than a factor of 2) as opposed to 8ppn, 

due to cache and bandwidth effects.  Figure 3 shows that on a 

socket-per-socket comparison, Pleiades outperforms C24 

except for the 4- and 8-socket cases (performance of C24 with 

4 sockets, i.e. 8 cores, was 14.88 seconds/step). The 

performance on Pleiades is better than on RTJones due to 

larger caches and greater bandwidth to memory on Pleiades. 

5.  USM3D 

USM3D is a 3D unstructured tetrahedral based, cell-centered, finite-volume Euler and Navier-Stokes flow solver 

[4]. Spatial discretization is accomplished using an analytical reconstruction process for computing solution 

gradients within tetrahedral cells. Steady and unsteady solutions are supported. The solution is advanced in time to a 

steady-state condition by an implicit Euler time-stepping scheme. A single-block, tetrahedral, unstructured grid is 

partitioned into a user-specified number of contiguous partitions, each containing nearly the same number of grid 

cells. Communication among partitions is accomplished by suitably embedded MPI calls.  

The USM3D code is typically memory bound within a single CPU. Available system cache sizes are not adequate to 

contain a large fraction of the core computation within the cache in the time consuming iterative solve phase. Thus, 

cache reuse is not significant, and the code is heavily dependent on available memory bandwidth for overall 

performance. Timing studies show that communication costs between partitions distributed across the nodes are 

almost negligible. Thus, scaling to large core counts is not related to MPI performance on the system, but is almost 

always dominated by ever increasing load imbalances created by the partitioning of the grid as the local cell counts 

decrease and their variance gets larger.  

The test case used here is an excerpt from a real production problem computing a high fidelity simulation of a 

transport aircraft configured for landing. The grid contains 108 million tetrahedra, requiring about 256 GB of 

memory (2 GB/core) and around 10 GB of scratch online storage. 

Table 3 and Figure 4 show the performance of USM3D on the Altix C24 and also on Pleiades and RTJones while 

running at two different core densities (4ppn and 2ppn). The performance of the code on Pleiades at either core 

density is significantly faster than C24 as is the 2ppn result on RTJones. At 2ppn the Pleiades system is nearly 60% 

faster than C24. Even in the worst case, the 4ppn RTJones result is about 90% of the C24 result.  

Table 2: OVERFLOW - Average time per step (secs) 

RTJones Pleiades 

8 GB/node 8 GB/node 
No. of  

Processes 
C24 

8ppn 4ppn 8ppn 4ppn 

16 6.87 27.71 11.55 16.24 7.29 

32 3.74 11.79 5.19 6.96 3.40 

64 1.93 5.36 2.96 3.09 1.75 

128 1.01 2.37 1.31 1.49 0.91 

256 0.51 1.20 0.75 0.74 0.47 

 

 
Figure 3:  Relative performance of OVERFLOW  
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Figure 4 shows a socket-based comparison of the performance. 

The relative performance between runs stays almost flat across 

widely varying socket (core) counts, demonstrating the code’s 

algorithmic insensitivity to cache size and communication issues.  

Also, the relative performance for a given socket count with 

varying core densities is also nearly constant. This is a good sign 

for the robustness of the architectural design, as the workload and 

memory access patterns change dramatically as the problem is 

spread out over more sockets and fewer active cores (implying 

vastly different styles of sharing of resources).  

As can be seen in Table 3, the parallel scaling on all platforms is 

approximately linear, about 3.6-3.7x from 128 to 512 CPUs. 

Optimization of the MPI communications has made the code 

fairly insensitive to the system interconnect performance. This is 

corroborated by the fact that the Altix 4700 has much better MPI 

latency performance, yet scaling is essentially invariant across all 

of the systems.  

It is also worth noting that the performance win for USM3D in 

going from 4ppn to 2ppn on Pleiades is less pronounced than that 

seen earlier with either CART3D or OVERLFOW when going 

from 8ppn to 4ppn. The reason is that both OVERFLOW and 

CART3D gain extensive benefit by effectively doubling their 

cache size, not sharing cache, and suffering less sharing of 

memory bandwidth when going from 8pn to 4ppn. In the case of 

USM3D, the code gains no advantage in cache behavior in going 

from 4ppn to 2ppn, but does get a slight boost from less sharing 

of memory bandwidth. 

6. CONCLUSIONS 

In this paper we presented performance results for three CFD codes on three large compute servers found at the 

NAS supercomputing facility. The focus of the work was to compare parallel scaling and time to solution between a 

large shared-memory Altix 4700 system and two clusters of quad-core Xeons connected with InfiniBand. The 

applications chosen—CART3D, OVERFLOW, and USM3D—represent a large portion of the production use of the 

NAS facility, and like many other CFD codes, they stress cache and memory bandwidth. 

The results show that when compared on a core-per-core basis, the shared-memory Altix usually outperformed the 

two clusters. Further, we found that contention for the shared resources in the memory hierarchy of the quad-core 

systems has significant impact on performance. Specifically, reducing contention by leaving cores idle on the quad-

core systems lowers the time to solution, but at the expense of requiring twice as many processors. When compared 

on a socket-per-socket basis, runs on the newer Xeon-based system that leave half the cores idle (4ppn), were on par 

with the Altix 4700, and were often better. We believe such comparisons are fair because they help compensate for 

the large price difference between the two types of systems and thus give us a measure of cost-effectiveness. 

The approach of leaving cores idle to reduce contention could help improve performance for other CFD codes that 

stress cache and memory bandwidth. It is worth experimenting with number of processes per node and amount of 

memory allocated to the MPI library in order to find a cost effective execution configuration. 
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Table 3: USM3D - Average time per step (secs) 

RTJones Pleiades 

8 GB/node 8 GB/node 
No. of  

Processes 
C24 

4ppn 2ppn 4ppn 2ppn 

128 9.54 10.4 7.78  6.13 

192 6.42 7.06 5.31 5.53 4.14 

256 4.93 5.31 4.02 4.18 3.14 

384 3.5 3.6 2.72 2.8 2.09 

512 2.61 2.79 2.07 2.19 1.65 

 

 
Figure 4:  Relative performance of USM3D  
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Abstract: Over the past several years there has been a concentrated effort at NASA’s Advanced Supercomputing 

Division (NAS) to dramatically improve the performance of a series of unstructured mesh-based CFD production 

codes that consume significant fractions of the available cycles on the NAS resident supercomputers . The NAS 

effort attempts to obtain a “force multiplier” effect through application software upgrades that effectively increase 

the overall throughput of the NAS systems. while reducing the turnaround time for the engineers utilizing these 

codes. The results of this effort have shown that there are a number of general platform independent optimizations 

that are rarely used, but offer significant wins in performance. This paper discusses some of the more successful 

strategies on significant unstructured mesh NASA CFD codes, USM3D, US3D, and FUN3D.  The work described 

in this paper was performed under sub-contract to CSC Corporation (NASA prime contract number 

NNA07CA29C). 

Keywords: unstructured mesh codes, FUN3D, USM3D, US3D, NAS Pleiades 

1. INTRODUCTION 

Unstructured mesh CFD codes have enjoyed a recent rapid rise in popularity at NASA’s NAS Supercomputing 

Facility located at the Ames Research Center, Moffett Field, CA. This has been due to the introduction of a number 

of optimizations that have significantly reduced their memory requirements, and improved their computational 

efficiency. I/O issues have also been resolved for very large problems. Over the past two years three codes -- 

USM3D [1], FUN3D [2], and US3D [3] have seen memory reductions of up to 3x and runtime performance 

improvements of up to 5x.  These changes have made unstructured computations affordable, and sometimes as 

computationally efficient as previous structured code executions. More importantly, the memory reduction changes 

have allowed users to grow problem sizes significantly. This allows design evaluations that were never possible 

before.  This paper discusses the strategies that were employed in obtaining the improved results. Many of these 

changes are applicable across a wide range of platforms, and form the basis for an optimization strategy for a more 

general class of CFD codes.   

 

During the course of our investigation we found a number of impediments to unstructured code efficiency. Several 

were holdovers from embedded Cray vector programming constructs. Others were poor algorithmic strategies now 

emphasized by the relatively weak memory systems found in today’s clustered micro-processor based architectures. 

In this paper, we first provide background by way of pointing out differences in structured and unstructured mesh 

codes and optimization issues arising in modern HPC systems. We then provide details of the optimizations that we 

performed on USM3D, followed by a brief overview of how these optimizations affect FUN3D and US3D.  

2. DIFFERENCES BETWEEN STRUCTURED AND UNSTRUCTURED CODES 

There are a number of significant architectural differences between classic structured mesh codes such as 

OVERFLOW [4], and the typical unstructured mesh codes such as USM3D, FUN3D, and US3D. These differences 

have been the fundamental inhibitor to the widespread adoption of unstructured codes for years.  

 

The most significant difference has been the much larger memory requirement of unstructured codes. These codes 

typically store very large block structured coefficient arrays that dominate the memory requirements overall. Where 

a structured code may need perhaps 20 times the total cell count for storage, the typical unstructured mesh may need 

over 200 times the cell count. This issue alone prevented adoption of unstructured codes for many years, as 

problems of interest would simply not fit into the physical memory on the systems.  
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A second major issue is found in the nature of the memory reference patterns of these codes. Structured mesh codes 

tend to access data sequentially.  They often do this using unit stride approaches, which make better use of cached 

data and thus achieve a larger fraction of the peak performance of the systems they run on. Unstructured codes, on 

the other hand, are more random in their memory access patterns.  This is the result of their arbitrary cell 

interconnectivity. As a result, they tend to move through data in the key compute regions with an arbitrary stride. 

This action guarantees a very poor hit rate in the cache, and less code performance overall. This often makes these 

codes “unaffordable” relative to the structured mesh equivalents.  NAS efforts have dramatically altered this balance 

in memory and compute for unstructured codes. 

3. MODERN HPC SYSTEMS – IMPACT ON OPTIMIZATION 

The modern HPC system is typically a cluster of compute nodes incorporating either Intel Xeon or AMD Opteron 

processors connected via a dedicated InfiniBand (IB) communications network.  Users decompose their CFD 

problems into a number of load balanced spatial sub-domains that execute independently on each processor of the 

system. These sub-domains occasionally exchange boundary information to synchronize the solution steps using 

MPI protocols [5] over the IB interconnect.  

 

NASA’s main compute cluster, Pleiades, is comprised of 6,400 compute nodes, connected via an InfiniBand based 

hypercube interconnect. Each node is configured as an 8 core SMP with 8 GB of uniformly accessible (“flat”) main 

memory. A total of 5888 nodes are based on Intel Xeon X5472 3.0GHz0 GHz quad-core processors, while a subset 

of 512 nodes, called RTJones, are based on Intel Xeon X5355 2.66 GHz quad-core processors.   

 

There are three major issues with the modern clustered systems that significantly impact achievable sustained 

performance. First, the memory bandwidth in current systems is not sufficient to keep the CPUs busy. Second, the 

nodal interconnect fabric latency characteristics can inhibit code scaling and overall performance. Third, the I/O 

sub-system architecture can impact the maximum capabilities of the CFD code due to poor use of buffer space. 

4. USM3D 

USM3D is a 3D unstructured tetrahedral based, cell-centered, finite-volume Euler and Navier-Stokes flow solver. 

The USM3D code has been investigated extensively under this optimization effort. There were a number of major 

issues associated with the code. First, it could not run large problem sizes (>50M cells) due to the large user- defined 

I/O buffers required in the initialization stage. Second, the code ran very slowly relative to the competing structured 

mesh codes. A factor of 10x was not uncommon, making it essentially unaffordable for large-scale studies of aero- 

vehicles at high fidelity.   

 

Memory Reduction – Removal of I/O Buffers Used in Initialization: While USM3D is similar in nature in the flow 

solver portion of the code to the FUN3D and US3D codes, it does have a unique issue with initialization. 

Surprisingly, the flow solver was not the memory dominant portion of the code. Code initialization dominated the 

total memory requirement of the model. In fact, this brief initial peak in memory use during initialization greatly 

limited the maximum problem size that could be run with the code. 

 

The memory problem was actually the most difficult to address in the USM3D optimization effort, as the reading of 

the grid/connectivity data and its partitioning across the CPUs involved many thousands of lines of code. User-

defined buffers were used to hold transitory data in the master process that was then broadcast to additional large 

buffers in the remaining processes. The optimization effort focused mainly on reducing the number and size of 

scratch arrays in the master process and eliminating virtually all of the multiple copies of the data on the outlying 

processes. by sending  only what was needed, rather than globally broadcasting the data, and culling later. In this 

rewrite, the master was forced to do the culling work for all other processes. Even so, this did not significantly 

increase the run time in the initialization step.  

 

Introduction of Integer*2 and Real*4 into the Code: In the late sixties, HPC users became comfortable with the fact 

that almost all HPC sites provided 60-bit single precision floating point arithmetic in their CDC supercomputer. 

Later this precision migrated up to a 64-bit standard for the Cray Research line of supercomputers. These two 

companies dominated HPC for nearly 30 years.  As a result, users became comfortable with this standard of 

precision. The question of what variables really needed 64-bit precision in a code was left largely unanswered.   
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Past experience with many CFD flow codes on non-vector architectures has shown that judicious use of Real*4 

wherever possible could significantly reduce the runtime and memory requirements of the code. Care must be taken 

in this process, as it is easy to lose precision in critical areas that will render many solutions useless and codes 

unreliable. Investigations have shown that much of the work in the USM3D coefficient build and computation of the 

tendency terms can be stored in Real*4 precision. This implies an immediate reduction by a factor of two in some of 

the largest arrays in the code.  For USM3D, this translated into nearly a factor of two in overall memory 

requirements as well.   

 

Not only is the use of Real*4 an advantage in memory storage, but it is also offers a serious improvement in 

effective memory bandwidth (words/second to cache), and effective cache size (twice as many words are stored in 

cache). Thus, any move to Real*4 can make a significant impact on code performance. For USM3D, the effects of 

this optimization resulted in run time reductions of around a factor of 2.  

 

For USM3D a number of indices are stored for later use in the indirect addressing of data. Some of these could be 

converted to Integer*2 to further reduce the memory footprint and improving the cache hit rates on this data as well. 

 

Figure 1 depicts the history of the memory reduction effort that 

was carried out in parallel with the performance enhancement 

effort. Figure 1 shows that over the course of about one year, 

the code was able to reduce memory requirements by about a 

factor of 2 and could in the end run production problems 108M 

cells in size on systems equipped with memory complements of 

2GB/core.  The maximum problem size supported was almost 

200M cells. 

 

Reduction of Indirect Addressing: The performance 

enhancement effort began with an attempt to speed up the 

coefficient build and solver portions of the flow code. Together, 

these sections consumed about 90% of the code execution time. 

Since USM3D is an unstructured model, it contained a 

significant amount of indirect addressing of memory in the coefficient build and point-wise SOR solve.  It was 

found that a reordering of loops in the solver, and restructuring of the storage of intermediate values into unit stride 

vectors, or even scalars, provided a significant reduction in run-time.  

 

Removal of the Colorization Scheme: The USM3D code has a long heritage. During much of its life it was resident 

on Cray Research vector machines. During the course of this time, a “colorization” scheme was introduced into the 

point-wise SOR solve section of the code. This method allows one to vectorize code that could not normally be 

vectorized. This was a significant win on the vector machines of the past. Another benefit of colorizing the solution 

algorithm was that it had the potential for accelerating the convergence by increasing the stride between the updated 

values. In effect, it accelerated the propagation of signals throughout a computational domain. 

 

It was realized early on that this scheme needed to be removed for best performance.  This vectorization approach 

was not needed on non-vector COTS microprocessors, and in fact guaranteed poor performance due to its inherently 

very low cache reuse. Furthermore, tests revealed that there was no actual benefit in convergence acceleration, or 

solution stability for a large selection of test cases. A rewrite of the point-wise solve routine NEWRHS to remove 

this scheme, provided approximately a 2x boost in code performance.  

 

Compilers and Runtime Libraries: Something not mentioned often in optimization efforts is the effect that compiler 

features and backend code generator limitations can have on overall code performance. We have noted that the 

compiler is very sensitive to compile time knowledge of loop features, such as loop limits, strides, etc. Loops with 

variables as starting and stopping points that are unknown at compile time can significantly degrade performance at 

run time. Loops defined as parameters known at compile time are much more likely to be unrolled effectively and 

pipelined accordingly. While not a significant factor for USM3D, run time reductions within US3D approached 20% 

from this restructuring alone.  

 

 
Figure 1: Memory Reduction Time Line for USM3D 
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MPI and Scaling: The communication in USM3D was initially highly serialized. It also was organized using Real*8 

data transfers. As the nodal data was converted to Real*4, so were the messages to be exchanged. As a result, 

communication message lengths were reduced by a factor of two. Finally, a more classic scalable peer-to-peer 

communication scheme was adopted, and MPI scaling became linear, even for the much faster optimized code.  

 

One issue with overall code scalability came to light with the USM3D code. It was noted that code scaling broke 

down at the higher CPU counts, due to modest variations in the partition sizes found on different CPUs. This 

pointed out that one must monitor the efficiency of the partitioning code to insure that the load balance remains even 

as the CPU count increases. It is expected that all unstructured codes will suffer this ultimate limit on scaling for a 

given problem as partitioning constraints, such as unique boundary conditions, airframe structural considerations, 

and the like, do not allow complete freedom in how a partition size 

is determined.   

 

Code Status: Figure 2 shows the impact of the major optimizations 

performed on the USM3D while Figure 3 shows the final 

performance numbers for various processor-per-node (ppn) counts 

and across various architectures. Prior to the optimization efforts, 

this run was impossible. since there simply wasn’t enough memory 

on a node to run it. Note that this run is a real production problem of 

108M cells representing a notional transport aircraft. Figure 4 shows 

a snapshot of the aircraft and selected cuts of the vorticity field. As 

can be seen in the performance chart, the 2ppn Pleiades runs are 

significantly faster than the all others, and particularly better than 

the previous generation Altix shared memory system, C24. The end 

result of the effort yielded a code that was almost 5x faster with a 2x 

reduction in overall memory.  

5. FUN3D 

FUN3D is a next generation unstructured 3D flow solver that can provide many solutions for many flow regimes. It 

has similar issues with the solve portion that were found in USM3D. Its initialization step however is quite different. 

FUN3D utilizes an independent pre-processing step to break the initialization data into a series of separate files such 

that each process reads files that only pertain to its initialization needs. This procedure avoids many of the pitfalls of 

using a global approach like USM3D in that buffer space for the global array data is non-existent.  US3D as noted 

below, uses the same approach (it should be mentioned that USM3D is moving to this format as well).   

 

FUN3D does however suffer from the same issues in the solve portion of the code. Both on and off diagonal 

elements were stored at Real*8 precision, as were a number of temporary variables. As with USM3D, the tendency 

terms were also Real*8 quantities. With the conversion to Real*4 for the off diagonal and tendency terms the solve 

was sped up by a factor of over 4.5x. The overall code performance was 3.5x faster.   

 

 
Figure 2: Cummulative Performance of USM3D versus 

Optimizations (108M cells, 256 CPUs) 

 
Figure 3: USM3D Performance versus CPU count for 

Various Architectures (108M cells) 

 
Figure 4 – Notional Aircraft used in the USM3D 

Optimization Study (108M cells) 
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Part of the speedup in FUN3D as in USM3D, was due to efforts to reduce the number indirect addressing activities 

within the core loops of the solve process. The removal of just one indirect reference can be significant.  About half 

of the time reduction for FUN3D was in the restructuring of key loops to remove such extra references.  

6. US3D 

US3D is a next generation unstructured CFD code from the University of Minnesota that supports both tetrahedra 

and rectilinear cells to enhance the resolving power of the simulation for complex geometries. Because of its 

piecewise structured grid, the code can make use of some line implicit SOR techniques to improve solution 

convergence rates. Claims are made of 10x speed advantages over point SOR based approaches typically used in 

codes like USM3D. 

 

The US3D optimization effort has been ongoing for just a few weeks. The solver and viscous flux calculation are the 

major time consuming components in this code. As with the other codes, the matrix solver portion dominates the run 

time. Early work identified a number of operations in the solve that could be converted to Real*4. The typical off-

diagonal terms were converted first, as were a number of temporary smaller arrays. The end result of this effort to 

date is 2.6x speedup in the solver and a 2.1x speedup in the code overall for a standard real world test case of 

approximately 30 million cells.  Additional work in the reordering of the indirect addressing approach, should yield 

at least another factor of two for this code.  

7. CONCLUSIONS 

Three unstructured mesh CFD codes used by NASA were examined and optimized for execution on NASA’s 

primary HPC supercomputing system. Results were significant, with code capabilities improving significantly. For 

USM3D, the maximum problem size increased from 49M cells to approximately 200M cells. Runtime performance 

for the code improved by almost a factor of 5.  FUN3D achieved a 3.5x runtime performance improvement with 

approximately a 30% reduction in its overall memory requirement. The recently begun US3D effort has already 

achieved a 2.1x speedup and a nearly 30% reduction in overall memory requirements.  

 

The optimizations performed in this effort were generic in nature and are applicable across all currently available 

COTS based clustered HPC platforms. It was found that the exploitation of Real*4 precision in these codes is a 

powerful optimization strategy that can allow users to achieve significant speedups in legacy code with little 

disruption in code structure, and negligible perturbations in solution accuracy. Other changes, such as reduction of 

indirect addressing in loops, loop fusion, etc can be accomplished quickly as well, with attendant significant runtime 

reductions.   

 

The current strategy offers significant benefits to the HPC site as well. The force multiplier effects of optimizing 

large consumers of cycles at these sites, both extends their useful life, and increases their overall throughput. For a 

particular user, it can enable computations that were heretofore computationally impossible.  

 

In the full paper we will discuss the optimization issues in fuller detail for each code. We will also provide charts of 

the impact of several of the optimizations in isolation for several of the codes.   
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Abstract: We describe a second-order double precision finite volume Boussinesq code 

implemented using the CUDA platform.  We perform detailed validation of the code on a 

variety of Rayleigh-Benard convection problems and show second order convergence.  We 

obtain matching results with a Fortran code running on a high-end eight-core CPU.  The 

CUDA-accelerated code achieves approximately an eight-time speedup for versus the Fortran 

code on identical problems. As a result, we are able to run a simulation with a grid of size 384
2
 

 192 at 1.6 seconds per time step on a machine with a single GPU. 

Keywords: CUDA, GPU Computing, Multicore, Rayleigh-Bénard convection. 

 

1. INTRODUCTION 

We investigate the use of massively multicore GPUs to accelerate a globally second-order accurate double precision 

CFD code. While supercomputing clusters allow for large problems to be solved in parallel, the trend towards 

increased parallelism on a single chip allows researchers to solve larger problems on a single machine than has 

previously been possible. Our code is implemented using the CUDA platform [1] and is designed to run on the 

NVIDIA GT200 architecture for GPU computing [3]. The NVIDIA Quadro FX5800 card consists of a single GT200 

GPU with 240 cores and 4GB of memory. GT200 supports IEEE-compliant double precision math with peak 

throughput of 87 GFLOPS/sec. Our code is optimized to take advantage of the parallel GT200 architecture and is 

approximately 8 times faster than a comparable multithreaded code running on an 8-core dual-socket Intel Xeon 

E5420 at 2.5GHz. See Table 2 for a summary of relative performance.  

 

2. NUMERICAL METHOD 

We solve the incompressible Navier-Stokes equations using the Boussinesq approximation: 


           


        

     

where u = (  ) is the fluid velocity field,  is the fluid temperature,  is the fluid pressure field,  is the 

coefficient of thermal expansion,  is the magnitude of gravity,  is kinematic viscosity, and  is thermal diffusivity. 

We solve these equations on a staggered regular grid (Arakawa C-grid) using a second order finite volume 

discretization. The advection terms are discretized using centered differencing of the flux values, resulting in a 

discretely conservative second-order advection scheme. All other spatial terms are discretized with second-order 

centered differencing. We use a second-order Adams-Bashford method which we prime with a single forward-Euler 

step at the start of the numerical integration. Pressure is treated via a projection method, where pressure is calculated 

instantaneously at the end of the time step to enforce     . This requires solving a Poisson equation for 

pressure, for which we use a multigrid method. 
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While we have chosen simple discretizations for ease of implementation and validation, our code is designed to 

support a wide variety of higher-order discretizations and stencils. Our optimization strategies will apply to more 

complex higher order numerical methods as well. 

 

3. IMPLEMENTATION 

We have explored a number of GPU-specific optimization strategies. GT200 is designed to run tens of thousands of 

threads simultaneously, using the large amount of parallelism to hide latencies for off-chip memory reads and 

writes. GT200 has peak off-chip memory bandwidth of approximately 102 GB/sec, which corresponds to an optimal 

balance of just over 6 math operations per double precision value loaded from memory. Because most of our inner 

loops perform a small amount of math, performance of our code is mainly limited by memory bandwidth. Therefore 

we focused on optimizing our memory access patterns to take advantage of GT200’s streaming memory 

architecture. 

3.1 Access Pattern Optimization 

On GT200, threads are grouped into batches of 32 called warps that execute in lockstep SIMD fashion. If threads in 

a warp read from the same cache line in the same cycle, these reads are batched into a single operation via a process 

known as memory coalescing. Coalescing operates at half-warp granularity, so uncoalesced loads and stores waste 

15/16
ths

 of available memory bandwidth. Therefore the most important optimization for memory-bound applications 

is to arrange work so that threads in the same warp will access sequential memory locations at the same time. 

GT200 has two small on-chip caches: a read-only L1 cache called the texture cache, and a read/write software 

managed cache called shared memory. With thousand of simultaneous active threads, on-chip caches are beneficial 

only if threads scheduled to the same processor access the same cache lines at the same time. Therefore optimizing 

for cache performance is very similar to optimizing for memory coalescing. The texture cache can be thought of as a 

“bandwidth aggregator” because it is designed to aggregate memory requests over several cycles so that coalescing 

will be more efficient. For some routines, especially finite difference stencils, we found the texture cache to yield a 

performance improvement of up to 1.4x. In many cases, however, it produced no benefit over coalescing alone. 

Because the shared memory cache is software managed, we found that the cost of the logic required to use it 

effectively typically was not offset by the bandwidth savings. 

3.2 Congruent Padding 

Another optimization we found to be important was a concept we term “congruent padding.” By congruent, we 

mean that for all pairs of indices (  ), the offset in bytes between the memory location of element (0, 0, 0) and 

element (  ) should be the same for all grids. Figure 1 demonstrates congruent padding in two dimensions. 

Because GT200 runs most efficiently with a large numbers of threads, we assign one thread per computational cell 

(  ). Since all threads translate from grid indices to memory locations in parallel, index translations must be 

recalculated at every grid cell. Congruent padding amortizes the cost of index translation over several grids by 

calculating the offset from location (0, 0, 0) to (  ) once per thread, and then adding this offset to the base pointer 

for each grid. In our code, this optimization reduces the number of instructions of a typical GPU routine by 10-15% 

and reduces the register usage by 0-10%. Minimizing the number of per-thread registers allows for more threads to 

be active at once. Having more active threads covers memory latencies more effectively, which improves  

throughput [3]. 
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(a) A 2x2 grid with 1 row of ghost cells on all sides. (b) A 4x3 grid with no ghost cells. 

Fig 1: An example of congruent padding in 2 dimensions. All grids have the same physical layout in memory, even 

though they may have different logical dimensions. Computational cells are white, ghost cells are light gray, and 

unused padding is dark gray. 

 

Resolution Full Slip No Slip 

 Value Difference Value Difference 

16  8  16 659.69 - 1674.29 - 

32  16  32 658.05 1.64 1699.25 24.96 

64  32  64 657.65 0.40 1705.59 6.34 

128  64  128 657.54 0.11 1707.22 1.63 

 657.51 - 1707.76 - 

 

Table 1: Calculated critical Rayleigh values for full-slip (aspect ratio  : .5 : 1) and no-slip (aspect ratio  : .5 : 

3.11) boundaries at different resolutions. The columns labeled Difference show the differences in values between 

subsequent grid resolutions. The reduction of this error by a factor of 4 for each doubling of resolution shows the 

globally second order convergence character of the numerical discretizations. The last row shows the Richardson 

extrapolated values, which match theory. 

 

4. VALIDATION 

To demonstrate the potential of our GPU based code for scientific applications we have validated the code for a 

range of problems. We compared our results with an existing CPU based code written in Fortran [5] as well as 

against published analytical, numerical, and experimental results. Since our code implements the Boussinesq 

equations we choose to examine whether it can reproduce known solutions to different Rayleigh-Bénard convection 

problems in which a constant temperature difference  is maintained between the top and bottom boundaries of the 

domain. The most basic result for Rayleigh-Bénard convection is the critical value of the dimensionless Rayleigh 

number   . Below the critical value Rac the solution is motionless and heat flux between top and 

bottom is purely diffusive. When Ra > Rac the diffusive solution becomes unstable to perturbations of arbitrarily 

small amplitude and a solution with non-trivial flow and enhanced vertical heat transport ensues. 

We estimated Rac in our codes by calculating positive and negative growth rates of u for small perturbations around 

Rac and extrapolating to find the value of Ra for which the growth rate would be zero. Our GPU and CPU codes use 

identical numerical methods and therefore have matching values to several decimal places. Table 1 shows calculated 

Rac values from our codes. The third and fifth columns show the differences in Rac obtained for subsequent 

resolutions, highlighting the globally second order convergence rate of the numerical implementation. For the 2D 

problem with the aspect ratios chosen, analytical values are known [7] (we treat this as a 3D problem by choosing a 

(-1,-1)

1 2 3 4 50

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

(0,-1) (1,-1) (2,-1)

(-1,0) (0,0) (1,0) (2,0)

(-1,1) (0,1) (1,1) (2,1)

(-1,2) (0,2) (1,2) (2,2)

1 2 3 4 50

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)



255

21st International Conference on Parallel Computational Fluid Dynamics
 

 

 

smaller aspect ratio and periodic boundaries in the y dimension). Using Richardson extrapolation, we obtain a value 

of Rac = 657.51 for the full-slip case, and Rac = 1707.76 for the no-slip case, both of which match the analytical 

results. 

To test a fully 3D problem, we also studied the onset of convection in a cubic box with no-slip conditions on all 

sides and Dirichlet conditions for T on the side boundaries. We find a critical Rayleigh number Rac = 6755 for this 

case, matching the published experimental [2] and numerical [4, 6] values. To verify the nonlinear advection terms 

in the equations, we calculated the solution for a supercritical value of Ra = 4.4  10
4
. We then calculated the 

Nusselt number     . The Nusselt number is the ratio of vertical heat transport to diffusive 

heat transport across a 2D interface of a motionless solution. Nu also depends on the Prandtl number,   . For 

Ra = 4.4  10
4
 and Pr = 0.71, Nu computed at the upper and lower boundaries is 2.05 (using both CPU and GPU 

codes) and exhibits global second order convergence when computed at increasing resolutions. This matches 

published results [6]. 

5.  COMPARATIVE PERFORMANCE 

   

(a) Perturbations appear in the 

stratifications. 

(b) Instabilities form. (c) Temperature mixes after the onset 

of turbulence. 

Fig 2: False color plot of T at the y = 0 plane for a 384
2
  192 resolution simulation with Ra = 10

7
. 

 

To generate a timing comparison, we ran an unsteady Rayleigh-Bénard convection problem on our GPU and CPU 

codes with Ra = 10
7
 and Pr = .71. The simulation domain was set to [-1, 1]  [-1, 1]  [-.5, .5], with periodic 

boundary conditions in x and y, and no-slip boundaries in z. As shown in Figure 2, the flow starts out motionless 

until instabilities form, and then transitions to turbulence. To accelerate convergence of the multigrid solver for 

pressure, we reuse the solution from the previous time step as an initial guess. Consequently, the number of v-cycles 

required for convergence increases as the flow becomes less steady. In order to characterize our performance fairly, 

we only count the average time per step once the number of v-cycles per step has stabilized. Because of the different 

performance characteristics of the GPU and the CPU, we have chosen slightly different multigrid relaxation 

schemes for the two codes. The GPU code, which uses a red-black Gauss-Seidel point relaxer, requires 1 full 

multigrid step followed by 7 v-cycles. The CPU code uses a red-black line relaxer and requires 1 full multigrid step 

followed by 13 v-cycles.  

Table 2 shows the relative timing of the two codes for problem sizes up to 384
2 192, which is the largest that can 

fit on a single GPU with 4GB of memory. GPU times are for a single Quadro FX5800 running on a Core2-Duo 

E8500 at 3.17GHz. CPU times are for an 8-core dual socket Xeon E5420 at 2.5GHz, and the CPU code is 

multithreaded using OpenMP and MPI to take advantage of all 8 cores. These hardware configurations were chosen 

because they are roughly equivalent in terms of cost. 

Our GPU timing results are significant for two reasons.  First, at the high end of simulation size, 384
2 192, we 

have achieved performance on a single node comparable to that often achieved on a small cluster.  Second, turbulent 

features can be observed at resolutions as low as 128
2 64.  At this resolution, our code can calculate up 12 time 

steps per second, which enables interactive turbulent simulations on a commodity PC with a single GPU. 
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Resolution GPU CUDA Code CPU Fortan Code GPU Speedup 

 ms/Step ms/Step/Node Scaling ms/Step ms/Step/Node Scaling  

64
2 32 24 18.3e-5 - 47 37.0e-5 - 2.0x 

128
2 64 79 7.5e-5 0.41x 327 31.2e-5 0.84x 5.3x 

256
2 128 498 5.9e-5 0.79x 4070 48.5e-5 1.55x 8.2x 

384
2 192 1616 5.7e-5 0.97x 13670 48.3e-5 1.00x 8.5x 

 

Table 2: Relative performance for the Ra = 10
7
 problem. Time per step is calculated ignoring the initial run-up to 

turbulence since multigrid converges faster during this period. The column labelled Scaling indicates the change in 

time per step per computational node from one resolution to the next.  Linear scaling in the number of computational 

nodes would therefore be 1.0x.  

5.  FUTURE WORK 

Our results demonstrate that GPU-based codes can be a powerful tool for real scientific applications. We have 

demonstrated second order convergence in double precision on buoyancy-driven turbulence problems using a GPU. 

Using a single workstation that is equipped with a GPU, our code can integrate a non-trivial flow at moderately high 

resolutions up to 8 times faster than a high-end 8-core CPU. We intend to extend our work in several ways. First, we 

will implement higher-order methods in both space and time. Second, we are interested in numerical ocean and 

atmospheric models such as [8] that use logically regular grids, but are geometrically irregular. Third, we will 

explore multiple GPU configurations such as [9]. A single motherboard may have several PCI-express buses, each 

of which can connect to one or more GPUs. In addition to improving performance for large computing clusters, this 

has the potential to dramatically increase the resolution that people without access to clusters can achieve. 
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Abstract: The CFD code Overflow includes as one of its solver options a quasi-SSOR
algorithm. This is a fairly small piece of code but it accounts for a significant portion of
the total computational time. This paper studies some of the issues in accelerating the
code by use of a GPU. The algorithm needs to be modified to be suitable for a GPU, and
attention needs to be given to 64-bit and 32-bit arithmetic.
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1. INTRODUCTION

Computational Fluid Dynamics has a history of seeking and requiring ever higher computational perfor-
mance. This quest has in the past been satisfied mainly by faster clock speeds. The era of increasing clock
rates has ended, due mainly to heat dissipation constraints. A boost in computational performance without
increasing clock speed can be supplied by parallelism. This parallelism can come in the form of shared mem-
ory parallelism, distributed memory parallelism, or a combination of the two. Common current paradigms
for parallelism are explicit message-passing with MPI [12] for either distributed or shared memory systems
and OpenMP [13] for shared memory systems. A hybrid paradigm is also possible.

A further possibility for code acceleration has recently attracted much attention. A Graphics Processing
Unit (GPU) can offer a very high computational rate if an algorithm is well-suited for the device. There
have been several projects illustrating the acceleration of scientific computing codes that is possible by using
GPUs [2,6,10]. In this paper we study the issues in accelerating a well-known CFD code, Overflow, on a
GPU.

2. OVERFLOW CODE

The Overflow code [3,4,9] is intended for the solution of the Reynolds-averaged Navier-Stokes equations
with complex geometries. The code uses finite differences on logically Cartesian meshes. The meshes are
body-fitted and geometric complexity is handled by allowing the meshes to arbitrarily overlap one another.
The code can be run in “standard” mode by having the user supply all the meshes and the interconnection
information, or it can be run in “Overflow-D” [5] mode by having the user supply only near-body meshes
along with an “X-ray” file which helps to define the solid surfaces. In “Overflow-D” mode the code itself
generates off-body Cartesian meshes as well as interpolation information allowing one mesh to obtain data
from another.

Overflow uses implicit time-stepping and can be run in time-accurate or in steady-state modes. Implicit
time-stepping is used because implicit methods tend to mitigate severe stability limits on the size of the time
step that arise for explicit methods on highly-stretched grids that are common for viscous flow problems
at high Reynolds numbers. A consequence of implicit time-stepping is that some method is needed to
approximately solve the large system of equations that arises when marching from one time level to the next.

The Overflow user needs to specify physical flow inputs such as Mach number and Reynolds number,
and boundary conditions which typically define solid walls and inflow or outflow regions. Along with these
physics-type inputs there are inputs which choose particular numerical algorithms and specify parameters
for them.

The basic equation of fluid motion solved by Overflow is of the form

Qt + L(Q) = f(Q), (1)

where Q are the flow variables, L(Q) denotes all the spatial differencing terms, and f(Q) denotes terms from
boundary conditions and possible source terms. As well there is turbulence modeling, but we do not consider
that in this paper.
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The basic equation (1) is written in “delta form” [1,8]

A(∆Qn+1) = Rn, (2)

where A is a large sparse matrix which is not explicitly constructed, ∆Qn+1 = Qn+1 −Qn, and Rn involves
the discretization of the L(Q) terms at time level n. The user of Overflow must choose among several
possible discretizations (e.g. central differencing, Total Variation Diminishing, Roe upwind). Each of these
choices typically requires further user specification of numerical parameters, e.g. dissipation parameters or
type of flux limiter and parameters for the limiter. Finally the user needs to decide which implicit algorithm
to use: some choices are factored block tridiagonal, factored scalar pentadiagonal, LU-SGS. Over the years
the code evolved and expanded to present 6 basic choices for the implicit part of the algorithm.

3. GPU CONSIDERATIONS

GPU cards were originally hard to program and had a steep learning curve. The advent of less daunting
interfaces such as CUDA [11] has led to an explosion of interest in using GPUs for numerically intensive
work in scientific computing.

For our purposes here the key issues of GPU cards are massive parallelism (hundreds or thousands of threads),
strict SIMD parallelism, 32-bit floating point arithmetic, and the overhead of data traffic between the CPU
and GPU. For a GPU to successfully accelerate a piece of code the code must be amenable to large-scale
SIMD parallelism, must tolerate 32-bit floating-point arithmetic, and must contain enough computational
work to amortize the cost of transferring data from the CPU to the GPU and transferring results back from
the GPU to the CPU. (Recent GPU hardware supports some limited 64-bit arithmetic but 32-bit arithmetic
is significantly faster.) We will see that the SSOR algorithm in Overflow is not well-suited to a GPU, but
that a Jacobi version of the algorithm might be suitable for a GPU.

4. THE SSOR ALGORITHM IN OVERFLOW

In an attempt to ease the user’s burdensome task of selecting algorithm options and choosing parameters
which may change for each class of flow problem, recently another option was added for the implicit part of
Overflow with the hope that it would be widely applicable and would be almost universally usable [7].
This algorithm is called in the references an SSOR algorithm, but it is strictly speaking a mix of an SSOR
algorithm and a Jacobi algorithm, a “quasi-SSOR” algorithm.

The key step of the quasi-SSOR algorithm is as follows. At each grid point with index (j, k, l) one computes
5 × 5 matrices AJ,AK,AL,CJ,CK,CL. Then, with iteration stage denoted by a superscript and with a
relaxation parameter ω, relaxation steps are of the form

∆Qn+1
jkl = (1− ω)∆Qn

jkl + ω(Rn
jkl −AJjkl∆Qn

j−1,k,l −AKjkl∆Qn+1
j,k−1,l −ALjkl∆Qn+1

j,k,l−1

−CJjkl∆Qn
j+1,k,l − CKjkl∆Qn

j,k+1,l − CLjkl∆Qn
j,k,l+1) (3)

for a forward sweep (assuming the 5-vectors ∆Qn+1
j,k−1,l and ∆Q

n+1
j,k,l−1 have been computed, and updating all

∆Qj as soon as a full line of j values has been computed), and a step of the form

∆Qn+1
jkl = (1− ω)∆Qn

jkl + ω(Rn
jkl −AJjkl∆Qn

j−1,k,l −AKjkl∆Qn
j,k−1,l −ALjkl∆Qn

j,k,l−1

−CJjkl∆Qn
j+1,k,l − CKjkl∆Qn+1

j,k+1,l − CLjkl∆Qn+1
j,k,l+1) (4)

for a backward sweep (again assuming ∆Qn+1
j,k+1,l and ∆Q

n+1
j,k,l+1 have been computed). The forward/backward

pair is then iterated. This algorithm is not strictly speaking an SSOR algorithm; it is Jacobi in J-lines and
SSOR in K and L planes. We will refer to it as SSOR for simplicity. This algorithm needs the 6 nearest
spatial neighbors of ∆Qn

jkl at either iteration level n or n+ 1.

The SSOR algorithm is a modest-sized subroutine but it may consume 80% of the total runtime of the code,
so it is a computational hot spot. The modest size of the subroutine and the large fraction of total time
consumed by the algorithm make using a GPU as a coprocessor to accelerate the code an attractive idea.
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Unfortunately, the algorithm as it stands is not suited to a GPU due to the dependencies of the iteration
(∆Qn+1 appearing on the right-hand side of equations (3) and (4)). An algorithm that would be suited to
a GPU would be a Jacobi algorithm where relaxation steps are of the form

∆Qn+1
jkl = (1− ω)∆Qn

jkl + ω(Rn
jkl −AJjkl∆Qn

j−1,k,l −AKjkl∆Qn
j,k−1,l −ALjkl∆Qn

j,k,l−1

−CJjkl∆Qn
j+1,k,l − CKjkl∆Qn

j,k+1,l − CLjkl∆Qn
j,k,l+1) (5)

Here we could envision assigning a thread of computation to each grid point and the threads could compute
independently of one another because there are no ∆Qn terms on the right-hand side of (5).

It is important to realize that the Jacobi algorithm might be less robust or might converge slower than
the original SSOR algorithm. Fully discussing this would take us too far afield; in this paper our focus
is on acceleration. If significant speedup can be attained then it will be important to visit stability and
convergence questions for the Jacobi algorithm.

The work presented here proceeded in several stages:
1. Implement a Jacobi algorithm on the CPU using 64-bit arithmetic; compare performance and conver-
gence/stability of Jacobi and SSOR.

2. Implement a Jacobi algorithm on the CPU using 32-bit arithmetic; compare performance and conver-
gence/stability of 64-bit and 32-bit Jacobi.

3. Implement a Jacobi algorithm on the GPU; compare performance of the GPU algorithm with the 32-bit
CPU algorithm.

5. IMPLEMENTATION AND RESULTS

The work here was done on a workstation equipped with a quad-core AMD Opteron 2352 processor (2.1GHz,
512KB L2 cache for each core, 2 MB shared L3 cache, 1 GHz HyperTransport). Only one core was utilized
for the computation. The host compiler system was the Portland Group compiler suite version 8. The GPU
card was an NVIDIA GeForce 8800 GTX with NVIDIA Driver Version 173.14.12. The connection between
CPU and GPU was a PCI Express 16X bus. The programming interface was CUDA version 1.0.

Implementing the Jacobi algorithm on the CPU, both in 64-bit and 32-bit arithmetic, was simple. The
strategy for GPU implementation of the Jacobi algorithm was to compute all the matrices AJ , etc., on the
CPU and transfer them to the GPU. The Jacobi algorithm itself was hand-translated into CUDA code. Each
column of data (j and k fixed, l varying) was assigned to one computational thread.

The test case is a viscous laminar flow over a flat plate; this is a three-dimensional extension of a classic
fluid dynamics flow problem. The grid was size 41× 21× 61. We compare the SSOR algorithm, the Jacobi
algorithm in 64-bit arithmetic, the Jacobi algorithm in 32-bit arithmetic, and the Jacobi algorithm with
GPU implementation. First we show the residuals for these cases; see Figure 1. At least for this case, 32-bit
arithmetic on the left-hand and 64-bit arithmetic on the right-hand side is sufficient to attain full 64-bit
accuracy of the solution; the flow solutions for the 4 variants differ from one another at the level of 64-bit
arithmetic roundoff error. Also, all the Jacobi residual curves, though different in details, would plot atop
one another if they were plotted on the same graph, while the SSOR algorithm converges slightly faster than
the Jacobi algorithm.

Here is performance data for these algorithmic variants. We show two grid sizes, 41×21×61 and 121×41×81.
Times shown are seconds per step for the whole code, so they include all explicit and implicit operations
and all data transfer to and from the GPU. For the 41× 21× 61 grid, compute time on the GPU was 0.072
sec/step and total GPU time, including data transfer, was 0.092 sec/step. For the 121×41×81 grid, compute
time on the GPU was 0.590 sec/step and total GPU time, including data transfer, was 0.719 sec/step.

Algorithm 41× 21× 61 121× 41× 81
SSOR 0.7020 sec/step 6.2588 sec/step
Jacobi/64 0.7522 sec/step 6.5258 sec/step
Jacobi/32 0.5733 sec/step 4.9104 sec/step
Jacobi+GPU 0.4078 sec/step 3.5561 sec/step
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Figure 1: Convergence for laminar flat plate

6. DISCUSSION AND CONCLUSIONS

These first results are encouraging. For a modest effort and for a naive implementation of the Jacobi
algorithm on the GPU (attention was paid to correctness, no effort was expended on GPU optimization) an
acceleration was attained. It is likely that an optimization effort on the GPU will yield further performance
gains. For example, the current implementation on the NVIDIA card is strictly memory-to-memory, with no
use of the faster local memory on each multiprocessor. Intelligent use of the local memory should improve
the GPU performance.

A wider variety of test cases needs to be tried with the Jacobi algorithm (both 64-bit and 32-bit arithmetic),
to see if any surprises arise in terms of stability and convergence. It is possible that that the Jacobi 32-bit
algorithm will have a more limited domain of applicability than the 64-bit SSOR algorithm. In any event,
there probably are many cases in which the Jacobi 32-bit algorithm with GPU acceleration will be useful in
improving the performance of Overflow.
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Overview 
     Presented is a modified form of the Quiet Direct Simulation (QDS) method [1] adapted for application of 
Graphics Processing Units (GPU) for flux calculation. Fluxes between source and destination cells calculated by 
QDS are flux-vector split and (on a regular Cartesian grid) a function of the source cell alone. The resulting 
advantage is the rapid calculation of fluxes between cells without the prior exchange of information between 
them, allowing highly efficient calculation using GPU. Various flow problems have been solved and consistent 
speed-ups of over 35 times (when compared to an equivalent single CPU code) are reported. 
 
Introduction 

The use of Graphics Processing Units (GPU’s) to assist in the solution of various engineering problems is 
hardly recent [2,3]. The solution to the Euler Equations is an example of a problem which still maintains 
relevance in modern engineering problems. This hyperbolic set of partial differential equations possesses 
analytical solutions in the rarest (and often least useful) conditions and so a significant amount of effort has been 
spent on their numerical solution. The increase in application of Computational Fluid Dynamics (CFD) over the 
recent decades has lead to a large number of mathematical and physically based numerical solutions to the Euler 
Equations [2,3].  

Numerous numerical methods have been used in conjunction with GPU technology to solve the Euler 
equations and have all demonstrated, to varying extent, considerable speed up when compared to existing single 
CPU codes. Elsen et.al. [3] applied a vertex-based finite difference method (with a multi-grid scheme) to the 
solution of hypersonic flows. However, possibly the most common of these numerical methods is the Finite 
Volume Method (FVM) [3,4]. In a majority of cases the fluxes are calculated using flux-difference splitting 
which requires knowledge of conditions on both sides of a cell interface, used together simultaneously, to 
calculate a net flux across a surface [5]. Such solvers work by calculating the conditions normal to cell 
interfaces and calculating a series of one- dimensional fluxes across each.  This concept is known as direction 
decoupling and has been shown to result in errors when the flow is not aligned with the computational grid [5]. 

An alternative are flux-vector split methods, where fluxes are linearly separated into components from both 
sides of a cell interface and can be calculated separately. These methods are infamous for their typical excessive 
numerical dissipation. While there are many mathematically split methods available, various kinetic theory 
based schemes have emerged. Such schemes base fluxes on the mathematical interpretation of 
phenomenological models. Possibly the most well-known kinetic-theory based finite volume solution method is 
Pullin’s Equilibrium Flux Method [6]. The fluxes of EFM were derived by taking moments of the Maxwell-
Boltzmann equilibrium distribution function at the cell interfaces. The resulting flux required the evaluation of 
two moments – one from each side of the interface – with the net flux across the surface the difference between 
each. The validity of the method lies in the assumption of flow being divided into a collision phase and a free 
molecular flight phase. During free m molecular flight, no forces are placed upon fluxing particles as they move 
from their source region to their destination. These fluxes are calculated based on the conditions normal to the 
interface; extensions to two dimensional flows were still performed using a series of one- dimensional fluxes. 
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A more general form of EFM was developed by Smith et al. [5] taking into account the true direction nature 
of the equilibrium fluxes. This method, called TDEFM (True Direction Equilibrium Flux Method) provided the 
analytical solution to gaseous motion from one cell to an arbitrary destination cell, regardless of whether or not 
these cells share an adjacent interface. The primary disadvantage to this method was the large computational 
expense associated with the evaluation of multiple error and exponential functions. As an alternative, the Quiet 
Direct Simulation (QDS) method has been developed in its current form by Smith et al. [1] and is based on the 
particle-based QDSMC method of Albright et al. as a method for simulating plasmas and for Eulerian flow [7,8]. 
The fluxes obtained by QDS are approximations of the TDEFM fluxes which avoid the evaluation of any 
expensive mathematical functions while retaining the true direction quality of TDEFM. 

Here, the QDS algorithm is slightly modified and applied to employ the Graphics Processing Units (GPU’s) 
of a typical video card using the CUDA library. The nature of QDS makes it ideal for such calculation and 
results demonstrate significant speedup when compared to a similar (non-GPU) code. Presented here is a 
description of the QDS algorithm, simulation and code validation using several standard benchmark problems. 
Finally, details of the computational expense associated with each code are presented.  

 
Quiet Direct Simulation Algorithm 

The underlying fundamentals behind QDS flux calculation remain constant regardless of whether or not the 
solver employs the local Graphics Processing Units. The QDS algorithm consists of three basic steps: 

 
1. Generation of a small number of representative particles N (typically 3-4 per coordinate direction) which 

are used to carry fluxes of mass, momentum and energy between cells.  The amount of mass and velocity of 
these representative particles are drawn from the Maxwellian distribution of velocities by approximating 
this distribution by the weights and abscissas of a Gauss-Hermite quadrature. For a spatially first order 
accurate simulation, each particles masses, velocities and internal energies are [1]: 
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where Δx is the uniform grid size, ζ is the total number of degrees of freedom and Ω is the number of 
simulated translation degrees of freedom (for example, one dimensional simulations use Ω= 1). The values 
of wj and qj are the weights and abscissas of the Guass-Hermite quadrature [9]. For N = 3, these are 
approximately wj = {1.18163, 0.2954, 0.2954} with corresponding abscissas of qj = {0, 1.2247, -1.2247}. 
The quantities of density (ρi), velocity (ui), velocity variance (σ2

vi) and energy (Ei) are cell properties. 
2. Calculation of fluxes between cells over the computational time step Δt.  During this time, fluxes are 

calculating assuming free molecular flight in the same way as conventional kinetic theory based schemes. 
When a regular, Cartesian grid is employed, no knowledge is required of the neighbouring cell locations or 
properties – these fluxes are a function of the source cell alone.  

3. Exchange fluxes of mass, momentum and energy between cells. Calculate each cells equilibrium 
macroscopic properties (i.e. density, temperature, bulk velocity) using the updated values.   
 

A flowchart describing the calculation procedure is provided in Figure 1. The main strengths of the QDS 
algorithm are (i) the entire simulation procedure (minus initialisation and post-processing) are performed on the 
GPU device, and (ii) the calculation of fluxes from each source cell can be easily performed on separate threads. 
During the flux calculation procedure, no communication is required between cells. This communication is 
required only when the fluxes are exchanged between cells. The current implementation employs a second order 
spatial accuracy, meaning that neighbouring cell information is required for the calculation of the local gradients 
in each cell used for higher order flux calculation, the details of which can be found in [1]. 
 
 Validation and Performance 

1D Shock Tube Test 
    A standard test for the compressible Euler Equations is Sod’s 1D shock tube. The Riemann analytical 
continuum solution for a shock tube allows the properties of the flow structure, including the shock propagation 
velocity W, the contact surface velocity uP along with the pressure, temperature and density, to be determined at 
any given time [10]. The simulations were conducted using an ideal monatomic gas.  The end walls were 
simulated as reflective walls.  The initial conditions in the high pressure and low pressure ends of the shock tube  
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Figure 1: Basic flow diagram showing application of QDS using GPU. The entire calculation procedure occurs 
on the GPU device with communication between the host and device only occurring prior to and after successful 
completion of the simulation. 
     
are pH = 10pL and the temperatures at both ends of the tube are the same.  At t = 0 the infinitely thin diaphragm 
separating the two gases at x = 0.5L is removed. The resulting propagating shock wave (MS = 1.55) travels from 
the high pressure region into the low pressure region. The simulation is performed on both single CPU and 
employing the GPU hardware specified in Table 1. The results obtained are identical in each case and both are 
in sound agreement with the analytical solution, as shown in Figure 2. The CPU time required by each code is 
presented in Table 2. As the number of cells increases, disadvantages associated with device initialisation 
diminish and the GPU capable code quickly demonstrates speed-ups of over 30 times when compared to the 
single CPU code. 
 
2D/3D Blast Wave Simulation in Urban 
Environment
Following the previous application of TDEFM 
to the simulation of blast waves in urban 
environments [11] we apply the QDS solver to 
two dimensional (and later, three dimensional) 
simulations to the simulation of shocked gas 
flow in urban environments. Some sample 
results are shown in Figure 3 with 
computational times and speed-ups 
demonstrated in Table 3. As expected, speed-
ups continue to increase with problem-size. The 
times shown are for two dimensional 
simulations due to the difficulty of performing 
large 3D simulations on single CPU systems. 
Two dimensional results (not shown) are in 
agreement with existing TDEFM and direction-
coupled EFM simulations.                               

Figure 2: Normalised density from both the analytical 
solution [ref] and 2nd order accurate QDS at flow-time 
T(RT)0.5/L= 0.2 using 1000 cells. The initial pressure ratio 
across the diaphragm placed at x = 0.5L was PH/PL = 10.0 
with a uniform temperature throughout. The gas is 
assumed ideal and monatomic. 
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Hardware  Details 
CPU Intel Xeon quad-core X5472,  3.0 GHz clock,  

L2 cache = 12MB. 
GPU Hardware NVidia Tesla S1070 GPU Computing Server 

(4 x Nvidia Tesla T10 GPU’s each with 
1.44 GHz clock, 4GB DDR3 Ram, 240 cores) 
Capable of single or double precision. 

Table 1: Details of computer hardware used to compile and run QDS simulations. The operating system used 
was openSUSE 10.2.  
 
 
Code 

CPU time (milliseconds) vs. Number of Cells 

256 512 1024 10000 20000 40000 50000 

CPU 12.8 51.2 203.2 24167 110519 467783 742792 

CPU+T10 (GPU) 14.2 29.2 60.1 1197 3715 13063 20125 

Speedup 0.9x ~1.7x ~3.4x ~20x ~29x ~35x ~37x 

Table 2: Details of CPU times required by both single CPU and GPU capable QDS codes using the computer 
hardware specified in Table 1. The specified CPU times are the total run times and include the GPU hardware 
initialisation times and time required to write results to local hard drive. 
 
 
 

 
 
 
 
 
 
Figure 3: 3D Blast wave simulation in an urban environment using 2nd order accurate QDS at flow-time 
T(RT)0.5/L= 0.1 using 1000000 cells. The “bomb” is modelled using a high temperature region with TB/To = 
100 in the region bounded by (0.45L < x < 0.55L), (0.45H<x<55H). (Left) 3D rendered image of the buildings 
(in blue) and the location of the propagating shock wave front (in red), (Right, Top) Contours of temperature at 
ground level, and (Right, Bottom) Contours of temperatures at 0.3H above ground level. 
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Code 

CPU time (seconds) vs. Number of Cells 

128x128 256x256 512x512 1024x1024 

CPU 10.3 88.5 718.3 5970 

CPU+T10 (GPU) 0.3 2.2 16.3 124 

Speedup ~34x ~40x ~45x ~48x 

 
Table 3: Details of CPU times required by both single CPU and GPU capable QDS codes using the computer 
hardware specified in Table 1 for 2D simulation of blast waves in urban environments. The specified CPU times 
are the total run times and include the GPU hardware initialisation times and time required to write results to 
local hard drive. 
 
 
Conclusion 
Presented is the Quiet Direct Simulation (QDS) method slightly modified for and applied to calculation using 
Graphics Processing Units (GPU’s). The simplicity of the QDS algorithm, which requires no evaluation of 
complex functions (only addition, subtraction, multiplication and division are used), makes the code not only 
very fast but also suitable for calculation on GPUs. Presented are results for a simple one dimensional 
benchmark test calculated with codes using both single CPU and multiple CPU (GPU) implementations. The 
presented results demonstrate that QDS, when combined with GPU computation technology, offers a significant 
speed up ( > 30 times) when compared to conventional, single CPU simulations. This allows the future 
possibility of very large scale simulations to be run on relatively small (and cheap) equipment without the 
requirement for traditional supercomputing clusters. 
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Abstract

The parallelism of a high-order residual-distribution algorithm is investigated on a het-
erogeneous system consisting of a multi-core CPU and a graphics processing unit (GPU).
Solutions of the steady-state Euler equations are obtained by executing a logistically simple,
but computationally expensive, portion of the algorithm on the GPU while the logistically
complex, but relatively inexpensive, remainder is simultaneously computed on the CPU
cores. The resulting hybrid parallelism, combined with the massive efficiency of the GPU,
conceals the computationally expensive portion and the overall speedup is shown to be de-
fined by the fraction executing on the CPU cores, according to Amdahl’s law. Based on
the observed speedup, the monetary savings provided by a heterogeneous CPU and GPU
architecture over that of only CPU cores are estimated.

1 Introduction

T
he potential for using graphics processing units (GPU) to assist with high performance
computation (HPC) has recently generated considerable interest. The GPU devotes more

transistors to data processing than the CPU, which diverts significant resources to data caching
and flow control [1]. While the CPU can efficiently process conditional instructions (branch-
ing) and dispersed data, the GPU is specialized for computation of highly parallel data using
instructions with a high arithmetic intensity. Programs that exhibit these characteristics can
benefit from the massive computational power of the GPU over the CPU. Perhaps most impor-
tantly, the GPU is a very cost-effective parallel processor since research and development are
supported by a large graphics visualization market.

In this work, the potential of using GPUs to assist with the computation of discrete so-
lutions to systems of partial differential equations using high-order residual-distribution (RD)
techniques is explored. The RD method is an attractive candidate for GPU computing because
it provides a compact stencil (lowering memory operations) and the high-order extension in-
creases the arithmetic intensity. The resulting algorithm illustrates the use of several levels of
parallelism including a heterogeneous level featuring simultaneous processing by the CPU and
GPU.

2 RD Methods for the Euler Equations

Residual-distribution methods are cell-vertex methods that are usually solved on simplexes
(triangles in two space dimensions). In the following analysis, numerical solutions are obtained
for the two-dimensional Euler hyperbolic system of conservation laws given by

∂U

∂t
+ �∇ · �F = 0 , (1)
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where eT is the specific total energy and hT is the specific total enthalpy. Gaseous flows of
air are considered and the preceding partial differential equations are supplemented with the
ideal gas law, p = ρRT , as an equation of state. The specific gas constant, R, is taken to be
287 J/(kg ·K) and a perfect gas is assumed with a specific heat ratio of γ = 1.4.

The numerical solution is obtained in an iterative manner by calculating the residual (or
fluctuation) on an element, E, of an unstructured mesh and then, by some appropriate tech-
nique, distributing the fluctuation to the vertices of that element to advance the solution in
time. The residual-distribution method can be summarized in three steps: computation of the
fluctuation, distribution of the fluctuation, and evolution of the solution.

The details of the RD method are available elsewhere [2, 3]. However, it is necessary to
recognize the three steps listed above, and also that two quadratures that must be performed:
integration of the fluctuation in each element by

φE = −

�

∂E

�F · n̂ dS , (3)

and integration of the linearized state in primitive variables, V = [ρ, u, v, p]T , by

V̄ =
1

ΩE

�

E

V dΩE . (4)

3 High-Order Method

Figure 1: P 3 element con-
sisting of an ordered col-
lection of primary elements
(shaded).

Fourth-order solutions are obtained by following a framework
similar to that of finite-element theory. The concept was first
adapted to RD methods by Abgrall and Roe [4]. As illustrated
in Fig. 1, P 3 elements are defined from an ordered collection of
primary elements, enabling construction of a polynomial with 10
degrees of freedom (vertices).

The high-order method only alters the integration of the fluc-
tuation and the linearized state. The distribution of the fluctua-
tion and the evolution of the solution are the same in the primary
elements as for standard second-order schemes. Because the so-
lution is represented by cubic polynomials of the primitive state
variables, the flux on each edge of an iso-parametric element can
potentially be a polynomial of degree 14, requiring eight Gauss
points. Integration of the linearized state requires four Gauss
points in each element.

4 Parallel Implementation

The target architecture for this research is a distributed HPC cluster with an arbitrary number
of identical nodes. Each node is assumed to contain a number of CPU cores sharing random-
access memory (RAM) and a GPU with its own dedicated RAM. Communication between the
nodes is accomplished using MPI. Within each node, the parallelism between the CPU cores is
expressed using POSIX threads. As well, a single POSIX thread is used to control processing

2
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Figure 2: Profile of the fourth-orderRD algorithm for a solution of Ringleb’s flow on a quad-core
CPU.

on the GPU. The remainder of this paper focuses only on the parallel interaction between the
CPU cores and the GPU within a single node. Specifically, our test node consists of a quad-core
AMD Phenom II 940 CPU and an NVIDIA GTX 260 (27 multiprocessors and 896 MB) GPU.

The numerical implementation that we envision features several levels of parallelism. The
grid is divided into zones and the coarsest level of parallelism is defined by the set of zones
distributed to each node. Within a node, the zones in the set are distributed among the CPU
cores. The finest levels of parallelism are expressed by the vector processing of the GPU. The
details of the parallelism of the GPU are described in the next section. However, there is also
an intermediate level of parallelism which is characterized by the simultaneous processing of the
GPU and CPU cores.

For parallel execution at the intermediate level, the algorithm is divided depending on which
processor a portion of the algorithm is best suited for. Attractive candidates for GPU processing
are the quadratures of the fluctuation and linearized state. The imposition of fourth-order
accuracy provides a high arithmetic intensity and the compactness of theRD stencil (9 elements
in Fig. 1) provides highly parallel data. Figure 2 shows a profile of the RD algorithm executing
on the quad-core CPU. The computational cost of the quadratures increases dramatically when
switching from second-order accuracy to fourth-order accuracy. Precise timings of the algorithm
show that 72.4 % of the time is devoted to integration in the fourth-order algorithm.

During each iteration of the algorithm, a streaming process is defined where the GPU
integrates the fluctuation and linear state in a set of zones before passing the zones to the
CPU cores. The CPU cores then distribute the fluctuation while the GPU simultaneously
begins integration of the next set of zones.

5 Quadrature on the GPU

The finest levels of parallelism occurs on the GPU. A complete description of the GPU architec-
ture is available in [1]. Here, a brief description is provided to illustrate how the quadratures are
decomposed to execute on the GPU. Current NVIDIA hardware (e.g., GeForce 8, 9, and 200 se-
ries) are composed of a set of multiprocessors. Each multiprocessor features a single-instruction,
multiple-data (SIMD) architecture with 8 processors that each execute a single instruction on
different data. The various NVIDIA GPUs generally only differ by the number of available
multiprocessors.

The programming of the quadrature is closely aligned with the hardware of the GPU. Blocks
are defined which are distributed to the multiprocessors of the GPU. GPU threads are defined
which execute in parallel on the processors following the SIMD pattern. A block is prescribed
by two P 3 Lagrange elements and 144 threads are used per Lagrange element to perform the
integration. As stated in section 3, eight Gauss points are required on each edge for integration

3
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of the flux and four Gauss point in the interior for integration of the linearized state. During
integration of the linearized state, 16 threads are used in each element to simultaneously evaluate
all Gauss points for all variables. During integration of the flux, 8 threads simultaneously
evaluate all Gauss points on the edge for a single variable. This is repeated four times for each
equation in the Euler system of equations.

6 Results
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Figure 3: Mach contours for Ringleb’s
flow. The mesh has been partitioned
into twelve zones.

Ringleb’s flow, a hodograph solution to the Euler equa-
tions that involves an isentropic and irrotational flow
contained between two streamlines, was used as a test
case to evaluate the parallel performance. In Fig. 3
Mach contours show a transonic flow and the partition-
ing of the mesh into six zones is illustrated. The mesh
was constructed using Gmsh [5] and partitioned using
the spectral partitioning algorithm of Chaco [6].

With the entire computation in double precision,
the addition of the GPU provides a speedup of ap-
proximately 3 times over computation on the two CPU
cores alone. According to Amdahl’s law, the maximum
speedup that can be expected by parallelization of the
integration in the results of Fig. 2 is 1/ (1− 0.72) = 3.6.

The synchronization and processor utilization is il-
lustrated in Fig. 4 for a single iteration of the algorithm.
Zones are numbered in Fig. 4 as they stream between
the processors. Integration of the linearized state and
fluctuation (red) is performed for four zones at once on the GPU. The results are transferred
(yellow) to the CPU cores so that distribution of the fluctuation can be performed (blue). Be-
fore a CPU core computes the distribution, the solution for the next set of zones is packaged
(magenta) and sent to the GPU (orange). Thus, the four CPU cores and the GPU process
concurrently. Because global time stepping is used, the solution cannot be evolved until the
residual has been distributed for all zones, and the global time step is known. As soon as the
CPU cores evolve the first set of zones, the GPU is tasked to integrate these zones for the next
iteration while the CPU cores continue to evolve the solution (green) for the remaining zones
in the current iteration. Processing of the zones on the CPU cores starts with the light blue
sections which indicate time spent configuring the workspace on the CPU. This includes such
tasks as computing additional variable states and applying boundary conditions. Note that the
workspace setup was not isolated from the distribution of the fluctuation in Fig. 2. It is shown
here because the results from the GPU are not requested until just before they are needed (after
workspace setup but before distribution of the fluctuation). The load balancing of the four CPU
cores is not perfectly even because of extra computations associated with boundary conditions
in some zones.

It is interesting to consider the capital costs of the hardware. The GPU costs about the
same as the quad-core CPU. With a speedup of 3, equivalent computing on only CPUs would
cost 1.5 times as much. Similar savings could be expected for operational (electricity) costs.

The GPU appears fairly occupied in Fig. 4 but the hardware is still being underutilized. The
results shown herein are all computed with double precision floating-point numbers and while
this helps ensure the accuracy of the solutions, the single-precision computational power of the
GPU is entirely neglected. The theoretical single-precision performance of the GTX 260 is 12
times that of the double-precision performance; use of single-precision should be maximized.

4
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Figure 4: Processor synchronization and usage for one iteration of the fourth-order RD algo-
rithm.

Experiments have revealed that full single-precision RD computations of Ringleb’s flow do not
yield satisfactory accuracy. However, it is probable that some portions can be performed in
single precision to better utilize the GPU. At the very least, the initial transient solution can
be largely solved in single-precision and the steady-state solution refined in double precision.

7 Conclusions

Usage of a GPU to assist computation of a fourth-order RD algorithm applied to the Euler
equations was found to yield a speedup of approximately three times. Equivalent computing
with only CPUs is estimated to have a monetary cost of 1.5 times as much. Better results
should be expected if parts of the RD algorithm could be solved in single precision.

Our own experience with programming the GPU using CUDA is encouraging. In this
study, it was shown that a significant speedup could be achieved by only porting a small, but
computationally expensive, section of the algorithm to the GPU. As a coprocessor, the GPU
can be effectively utilized to enhance the computational efficiency of CFD algorithms.
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This work presents on-going research on the large-eddy simulations (LES) of the Richtmyer-
Meshkov instability (RMI) in both plane and converging geometries and the turbulent mix-
ing generated by this flow. The RMI occurs when a perturbed interface between two fluids
of different density is accelerated impulsively by a shock wave depositing baroclinic vorticity
at the interface. Examples of the occurrence of the RMI are present in experiments aiming
to achieve inertial confinement fusion, in natural phenomena such as supernova collapse, or
in technologies involving supersonic combustion.
The reference problem consists of an air/SF6 plane interface in a light-to-heavy configura-

tion, initially impacted by a planar incident shock of Mach number MI and then reshocked
after reflection of the transmitted shock off the endwall of the shocktube [1]. Besides,
a canonical simulation of the RMI in a cylindrical converging geometry (90◦ wedge) has
been set up in parallel to validation experiments of converging shocks in a wedge currently
conducted by the group of Prof. Dimotakis at GALCIT. An imploding cylindrical shock
impacts a perturbed, cylindrically-shaped density interface that separates light air (out-
side) from heavy SF6 (inside). The transmitted shock converges down the wedge, reflects
off the z-axis, and reshocks the interface, initiating a strong turbulent mixing, similar to
the plane case. A study of the wave diagrams describing the shock-contact interaction with
reshock shows differences between the two geometries, as presented in Fig. 1. In particular,
multiple reshocks follow the first reshock in the converging geometry, while expansion wave
reverberations are observed in the plane geometry.
The reshock process produces a large dynamical range of turbulent scales, necessitat-

ing the use of LES. While conventional LES models generally consider only resolved-scale
transport and do not attempt to capture the mixing process between the two fluids, the
stretched-vortex subgrid-scale (SGS) model of Misra & Pullin, extended to compressible
flows by Kosovic et al. and subgrid scalar transport by Pullin, is based on an explicit
structural modeling of small-scale dynamics (see [2] for detailed references). This is an
SGS model that utilizes stretching vortices as the essential subgrid element in the clo-
sure of Favre-filtered Navier-Stokes equations by providing the subgrid stress tensor τij ,
the turbulent temperature flux qT

i , and the mixture fraction flux qψ
i . This model enables
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Figure 1: Wave diagrams for light-to-heavy air/SF6 MI = 1.2-shock interactions

a computational paradigm for multi-scale LES that extends estimates of some turbulent
statistics from the resolved cutoff-scale to the Kolmorogov and Batchelor scales.
The resolution requirements imposed by the flow physics vary greatly both spatially and

temporally for these simulations. For example, different key features such as shock waves of
different strengths and turbulent mixing regions (as seen on Fig. 2 and 3) need more resolu-
tion than other smoother regions of the flow. This is provided presently through LES within
the AMROC framework developed by Deiterding [3] and based on the structured adaptive
mesh refinement algorithm (SAMR) of Berger & Oliger [4]. Discrete conservation of mass,
momentum, and energy is accomplished by using a flux-based conservative finite-difference
approach. To illustrate the need of AMR, consider our larger converging cylindrical simula-
tion (MI = 2.0 incident cylindrical shock as it impacts the cylindrical interface), for which
the domain is discretized with 95×95×64 cells on the base grid with three additional levels
of refinement based on the local density gradient. The refinement ratio between each level is
equal to 2 for all levels and directions, and the subgrid cutoff scale is set to that of the finest
mesh. As the flow evolves, the distribution of the AMR hierarchy to different processors is
adjusted dynamically to balance the work and all parallel data structures are automatically
rearranged (cf. Fig. 2). The simulation was performed using 32 AMD Opteron 2.5 GHz-
quad-processor nodes (16 GB memory each) and consumed about 70,000 h CPU time. The
cell count varies from a minimum of approximately 10 million cells in the early times of the
simulation, when the mixing zone has not yet radially expanded, to a peak of around 140
million at late times. AMR reduces the computational expenses compared to the equivalent
finest unigrid 760× 760× 512 problem that would have used approximately up to 3 times
more storage and taken more than 3 times longer to complete.
The numerical method is formulated for Cartesian uniform grids, and is applied to each

subgrid of the mesh hierarchy. It is an extension of the hybrid method by Hill & Pullin
[5] to SAMR meshes. A weighted, essentially non-oscillatory (WENO) scheme is used to
capture discontinuities (such as shock waves or fine/coarse mesh interfaces) but switches to
a low-numerical dissipation, explicit, tuned center-difference scheme (TCD) in the smooth
or turbulent regions, optimal for the functioning of explicit LES such as the SGS stretched-
vortex method. To ensure discrete numerical stability of the inviscid terms (momentum,
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(a) (b)

Figure 2: Light-to-heavy air/SF6 MI = 2.0-converging cylindrical RMI: Differently colored
iso-surfaces corresponding to mass fractions ψ = 75%, 50%, and 25% visualize the evolution
of the mixing zone (a) after the first imploding shock interaction and (b) after the first
exploding reshock. The gray levels on the background planes represent the domains of
different mesh refinement (only first 3 levels displayed)

scalar and energy convection terms), the centered discretization are written in a stable,
energy preserving (skew-symmetric) formulation adapted to compressible flows [6]. For the
subgrid activity to be correctly computed, thereby assuring the quality of the LES, the use
of WENO is restrained to regions containing shock waves only. Switching between WENO
and TCD has been optimized using a detection criterion based on Lax’s entropy condition
[7].

(a) (b)

Figure 3: Light-to-heavy air/SF6 MI = 2.0-converging cylindrical RMI: azimuthal view
(plane slice z = 0) of Schlieren density gradient photographs showing shock waves and
density stratifications (a) after the first imploding shock interaction and (b) after the first
exploding reshock (all 4 levels used)
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The parallelization strategy implemented in AMROC is a rigorous domain decomposition
approach. Accumulating the work of all refinement levels, the root level is split at run-
time utilizing a Hilbert space-filling curve (cf. [3]). All higher levels follow the base level
whenever the distribution to processors changes (operation “Recomposition”). Subgrids are
synchronized with layers of ghost cells that are also used to implement physical and coarse-
fine interface boundary conditions. The operation “Boundary value setting” is dominated
by the overhead involved with parallel data sychronization. As a scalability test for AMROC
we consider a 3-level simulation of a confined explosion problem using the WENO scheme.
The time per base level iteration of the most expensive operations is displayed in Fig.
4(a). As it can be expected with the chosen parallelization approach, linear speed-up is
achieved for the block-based numerical update of the finite volume scheme (“Integration”),
while the scaling of the operations “Boundary value setting” and “Recomposition”, that
involve parallel communication, is less optimal. We have found the parallel performance of
the overall algorithm (cf. Fig. 4(b)) suitable for effective parallel computations on several
hundred processors.
A detailed quantitative analysis of results has been obtained from post-processing on

saved parallel data files that are read in on smaller CPU count. The investigation includes
space-time histories of instantaneous plane/cylindrical shell-averages . of diverse quantities
Q, taken parallel/concentrically to the main shocks. Typically, we need to evaluate shell-
averages of about a hundred base quantities (ρ, ρ2, etc.) across the entire domain. For
each time considered, the post-processing required around 1,000 h CPU. From the base
shell-averages, we define, for example in the cylindrical geometry:

Q(x , t) ≡ Q(r, t) +Q(r, θ, z, t),
Q(r, t) ≡ ρQ

ρ
,

Varρ(Q)(r, t) ≡ Q2 − Q̃2 =
ρQ2
ρ

− ρQ
2

ρ2
,

where ρ is the total gas density, and Varρ(Q) is the Favre-like variance of Q. The analysis
illustrates the fundamental role of the subgrid model in the turbulent dissipation, the tur-
bulent kinetic energy (as shown in Fig. 5), the scalar dissipation, etc. In addition, from
the general Navier-Stokes equations, shell-averaged equations are derived for the turbu-
lent kinetic energy, the turbulent mass flux in the axial/radial direction, and the density
variance. These statistics are ultimately used to estimate the relative importance of each
term involved in the shell-averaged equations. This approach represents a first step to un-
derstanding and eventually modeling the turbulent mixing characteristics of such complex
shock-driven flows in both geometries.
Diverse power spectra, including velocity components, density, and scalar spectra, as

well as other quantities such as Taylor and Kolmogorov microscales are evaluated within
the turbulent mixing zone. Additionally, mixing properties across the width of the mixing
zone are investigated via the Reynolds joint density-mixture fraction probability density
function:

P̃(ψ;x , t) ≡ 1
ρ


ρP(ρ, ψ;x , t)dρ,

where ψ is the mass fraction.
The dicussion of the numerical results will emphasize the similarities and differences be-

tween both geometries and finally allow us to consider the present AMR-LES framework as
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Figure 4: CPU scalability test: 3D adaptive computation with 3 grid levels (coarse grid of
30× 30× 30 cells, uniformly refined grid of 120× 120× 120 cells (1.73 Mcells)) of a circular
shock-wave expanding in an enclosed box. The reflected shocks interact in a complex
manner. (a) represents the breakdown of computational costs in second per iteration, (b)
the total time per iteration
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Figure 5: Light-to-heavy air/SF6 MI = 1.2-RMI: Total volume-averaged TKE vs. time for
the (a) plane and (b) cylindrical geometries (arbitrary units)

a credible tool for the detailed study of practical multi-scale applications involving turbulent
compressible flows.
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Abstract: 

Performing Direct Numerical Simulation (DNS) on large scale systems (offering more than 104 

cores) has become a challenge in high performance computing. Successful attempts have been 
made recently using fully spectral codes with a 2D domain decomposition, referred to as the 
volumetric  decomposition  (See  for  example  [6,  10]).  Compared  to  the  former  slabwise 
decomposition, this method, initiated by Eleftheriou et al. [7], the number of cores usable for a 
problem  of  size  N3 increases  from  N to  N2.  This  highly  scalable  way  to  perform  three 
dimensional FFT has been improved and implemented recently in the Open Source library 
P3dfft, by Pekurovsky [9] at the San Diego Supercomputer Center. An other advantage of the 
2D  decomposition  is  the  degree  of  freedom  added  in  the  grid  management.  It  gives  the 
opportunity to use unequal number of grid points (Nx, Ny, Nz), without affecting the overall 
scalability [5]. Thus the grid can be chosen in better agreement with the physics of the flow. 
We  propose  to  take  advantage  of  the  volumetric  decomposition  in  situations  where  one 
direction  is  treated  with finite-differences  schemes.  Such  schemes  give  the  possibility  i/to 
solve non-periodic boundary directions encountered in jet or channel flows for instance ii/to 
use  nonuniform  grids  to  study  non-homogeneous  turbulence  (mixing  layers  and 
aforementioned situations), while keeping the spectral accuracy in two directions.

The coupling between the possible number of grid points in each directions and the processor 
distribution is studied and tested on the Blue Gene/P architecture. Scalability of the algorithm 
is presented using up to 32768 cores.  Finally,  preliminary results of a complete simulation 
using 109 grid points on 16384 cores is presented. From the authors knowledge it is the largest 
DNS simulation using i/only two homogeneous directions ii/a volumetric decomposition in a 
hybrid  spectral/finite  difference  solver.  In  this  situation  where  the  turbulence  is  not  fully 
homogeneous, 2.5 millions of CPU hours are required to obtain converged statistics.

Keywords: Turbulence, Large Scale DNS, Blue Gene/P

1. FLOW CONFIGURATION UNDER STUDY

With the aim of investigating the interaction between turbulence and a solid wall,we have designed a configuration, 
where the turbulence self diffuses from a plane source towards a rigid wall as presented Figure 1. The turbulence 
production does not rely on the presence of mean-shear but it is instead synthesized inside a bounded layer using a 
specific forcing field. The effects induced by the presence of a mean shear thus cancel. The viscous effects as well 
as the kinematic blocking can be fully isolated in the near wall region as first demonstrated by Campagne et al. [2]. 
The resulting turbulent flow field is homogeneous with respect to x and y and rotation invariant about the z axis, 
which justify the implementation of a Navier Stokes solver mixing finite-difference and spectral schemes. The x and 
y directions are treated using the same number of Fourier nodes Nxy, while the z direction uses a different number of 
grid points Nz and a non-uniform distribution. The forcing field is implemented as a source term in the Navier Stokes 
equations. 

∂ui

∂ t
u j

∂ui

∂ x j

=−
1

∂ P
∂ xi


∂2ui

∂ x j ∂ x j

 f i  x ,t  (1)

It is nonzero only in the central region of the domain (dark-blue on Figure 1).  It has been designed in the physical 
space to satisfy several constraints which are mainly i/random in time ii/divergence-free iii/localized in space. This 
kind of forcing demonstrates good abilities to synthesize a plane source of turbulence [1].
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Fig 1: Numerical set up Fig 2: 3D torus  network on Blue Gene/P

The computations are started with a flow at rest. During a transient, the amount of turbulent energy contained in the 
whole domain is growing under the action of the forcing field. A statistically steady state is reached when the power 
induced by f(x,t) is statistically balanced by the viscous dissipation. This numerical setup can be seen as an analogue 
of the oscillating-grid experiments (see for example [4]).

2. PARALLEL PERFORMANCES OF THE NAVIER STOKES SOLVER

Navier-Stokes equations are solved in the hybrid  Fourier/physical  space.  The present  solver  is  pseudo-spectral, 
based on Fourier modes in the two periodic directions, and on finite differences with a sixth-order compact scheme 
[8] in the wall-normal direction. The parallel implementation is performed in the same way as in a fully spectral 
solver. In the latter, the parallel efficiency is strongly conditioned by the three dimensional FFT. This algorithm 
requires 2 or 3 different data distributions with the following characteristics: the arrays are distributed over one or 
two directions in such a way that 3D data with the same array index in the third direction is kept: i/local on a CPU 
core  and  ii/contiguous  in  memory.  Thus,  the  FFT  computation  in  each  direction  and/or  the  finite  difference 
resolution is  performed locally  on a single  core  and does  not  require  any parallel  communications.  Therefore, 
implementation efforts concentrate on the data transposition from one domain to an other, in order to minimize the 
cost of the communications involved. The slabwise decomposition involves a single transposition and is the most 
efficient implementation in many cases. With this method however, a problem of size N³ can be distributed over N 
cores only, which is a strong limitation on nowadays supercomputers.

Recently,  Pekurovsky  developed  the  open-source  library  p3dfft to  perform  3D  FFT  using  a  volumetric 
decomposition, meaning that data are distributed over two instead of a single direction, thus involving n = p∙q cores. 
This  library,  written  in  fortran  calls  optimized FFT libraries  such  as  ESSL or  FFTW. Its  scalability  has  been 
demonstrated on Blue Gene/L [5]. We use a slightly modified version in our C code to perform 2D FFT only and 
solve finite-difference equations with the optimized Blas/Lapack libraries at the last stage If p = q = N the number 
of usable cores is extended from N to  N² for a problem of size N³. In Figure 3 the data distribution is performed 
using 4 cores (p = q = 2) marked with different colors. We observe that yellow/green and blue/red blocks constitute 
two independent groups of cores where the parallel communications remain internal during the first transposition. 
The n MPI processes define a virtual p x q 2D grid where communications are performed independently inside each 
line/column during the first/second transposition.  The Blue  Gene/P physical  topology is  a  3  dimensional  torus 
(X, Y, Z) of quad-cores processors,  where each processor can directly communicate with its nearest neighbor in 
each of the three directions, as presented in Figure 2. In the fully distributed mode (VN), the 4 SMP cores generate a 
fourth dimension in the topology (X, Y, Z, T), where the communications times are the fastest. To achieve the best 
performance during the computation of 2D FFT, two classes of parameters need to be set to their optimal values:

● The couple (p, q).

● The mapping of a virtual process 2D topology on the physical cores.
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Fig 3: Slab decomposition versus volumetric decomposition for the FFT computation.

Using the VN mode, selecting the predefined mapping  TXYZ and maximizing the slowest varying index  p in the 
processor grid gives the best results. In this optimal configuration, processors are numbered using the T direction in 
the  4D torus  as  the  fastest  varying  index.  Different  2D mappings  were  tested  on  a  static  configuration,  with 
negligibly  smaller  time  restitution  obtained  in  best  cases.  In  fact,  building  such  a  2D  optimized  mapping  is 
worthwhile in situations where the parallel communications are mostly of neighbor to neighbor type. However, the 
semi-global  communications  involved  by the  transpositions  induce  many communication  types  and  reach  their 
maximum efficiency in the predefined mapping available on the Blue Gene/P.

3.LOAD BALANCING

Classically,  the data packing chosen in  p3dfft transform an array from  Nx∙Ny∙Nz points in the physical  space to
(Nx+2)/2∙Ny∙Nz Fourier modes in the spectral space (assuming that Nx is even). This data packing introduces a slight 
load unbalance, as an optimal distribution of the Nx points over p processors in the physical space will usually result 
of an unbalanced and non optimal distribution of the (Nx+2)/2 Fourier modes over q processors in the spectral space. 
Although this is not crucial in terms of data exchange between processors, it affects the loop sizes when working 
locally on a processor at the finite-difference stage. The related extra cost can reach 10% in worse cases. The phase-
shift dealiasing method used for the nonlinear terms has to be coupled with a spherical truncation [3] which removes 
the aforementioned modes  k((Nx+2)/2,  y,  z). Thus we ignore this modes and avoid unnecessary operations, while 
keeping the desired accuracy.

4. GRID DEFINITION

Using the volumetric decomposition, we gain a degree of freedom in the grid generation. It gives the possibility to 
use different  grid  points  numbers  in different  directions,  contrasting with the  N³  size imposed by the slabwise 
decomposition.  The grid  definition has  to  fulfill  constraints  of  different  kinds in  homogeneous/inhomogeneous 
directions. In the homogeneous direction, it is mandatory to satisfy the spatial decorrelation and resolve the smallest 
uniform length scale, whereas in the second case the main issue is to map the grid according to the smallest length 
scale.  The new degree of freedom brought by relaxing the constraint  Nz=Nx=Ny is  particularly useful  when the 
calculation domain should minimize the CPU cost generated by the transient, or when the different directions of the 
problem are decoupled such as in jet flows. In our configuration the total number of grid points is set as a function of 
Nxy and Nz, corresponding to the dimension x or y, and z. The volumetric decomposition yields:

N tot=N xy

2 N z=N xy

N xy

p

N z

q
pq (2)

Nxy = k1∙p and  Nz = k2∙q  are therefore two necessary conditions of optimal load balancing. This freedom degree, 
which decreases with the number of cores, is not limited to large scale simulations. Figure 4 shows all (Nxy,Nz) 
couples  ensuring  optimal  load  balancing  for  both  decompositions  if  the  number  of  cores  is  set  to  n=1024 or 
n=16384.
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Fig 4: Possible combinations of (Nxy,Nz) when using the volumetric decomposition: 
left- For n = 1K cores, right - For n = 16K cores. Red circles indicate the slabwise decomposition (p=1).

 Blue lines indicate isovalues of the total number of grid points.

In the present computation, the domain is cubic with the forced layer filling one third of the domain. The forced-
eddy size is set to one quarter of the horizontal dimension. These characteristics ensure the spatial decorrelation in 
the homogeneous directions and a sufficient diffusion length. The box size being set, we introduce a method to 
estimate  the  anisotropy  induced  by  the  rigid  wall  at  the  small  scales  based  on  a  similarity  hypothesis  with 
intermediate length scales, leading to the definition of two "oriented" Kolmogorov length scales  ηxy and  ηz.  The 
number of points in the homogeneous direction is adapted to satisfy the resolution criterion  (kxy)Max∙ηxy=1.5. The 
mapping of the last direction follows the same rule using the modified wave number k'z, which is adequate with our 
sixth-order compact scheme. More grid points are required to resolve the  z direction with this domain size and a 
targeted Reynolds number, justifying the choice of a 1024 x1024 x1280 grid.

Fig:5: Parallel scaling (lK=1024cores): left-Overall scaling, right-2D FFT scaling

CONCLUSION AND ONGOING WORK

The volumetric  decomposition is  shown to be  particularly  adapted  to  mixed spectral/finite-difference  solver  as 
demonstrated by the large scale scalability test presented on Figure 5. The degree of freedom provided by the 2D 
decomposition gives a flexibility close to full finite-differences/volumes solvers, and offers an excellent  overall 
scalability  with  a  spectral  accuracy  in  two  directions.  The  final  paper  will  present  the  currently  running 
1024 x1024 x1280 test  case,  and preliminary results  which includes  first  and second order  statistics  as  well  as 
Reynolds-stresses tensor budgets. 
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Abstract

Since direct numerical simulation (DNS) cannot be performed at high Re-numbers, a dynam-
ically less complex mathematical formulation is sought. In the quest for such formulation, we
consider regularization (smooth approximations) of the nonlinearity. The regularization method
basically alters the convective terms to reduce the production of small scales of motion by means
of vortex stretching. In doing so, we propose to preserve the symmetry and conservation proper-
ties of the convective terms exactly. This requirement yields a novel class of regularizations that
restrain the convective production of smaller and smaller scales of motion by means of vortex
stretching in an unconditional stable manner, meaning that the velocity can not blow up in the
energy-norm (in 2D also: enstrophy-norm). The numerical algorithm used to solve the governing
equations preserves the symmetry and conservation properties too. In the present work, regular-
ization modelling is tested for a fully-3D geometry: turbulent flow around a wall-mounted cube
at Reh = 7235 (based on the cube height and the bulk velocity). Modelled results are compared
with the new DNS results carried out on the MareNostrum supercomputer using 300 CPU on
a structured Cartesian mesh with ∼ 16 × 106 points. The algorithm used to solve the Poisson
equation works well on arbitrarily meshed 3D grids and is therefore well-suited for the proposed
DNS simulation. Moreover, details about the Poisson solver for DNS and the parallelization of
code are also discussed.

Key words:
DNS, regularization modelling, wall-mounted cube, parallel 3D Poisson solver,
symmetry-preserving discretization

1. Introduction

Turbulent flow around a wall-mounted cube has been the subject of numerous experimental
and numerical studies in the last two decades. Results showed that this flow is mainly charac-
terised by the appearance of a horseshoe-type vortex at the upstream face, an arc-shaped vortex
in the wake of the cube, flow separation at the top and side faces of the cube and vortex shedding.
However, most of the numerical studies have been performed using RANS and LES modelling
techniques while accurate DNS simulations are quite scarce and limited to very low Reynolds
number (the reader is referred to the review by [1] and the references therein). Moreover, since
this flow configuration is used for benchmarking purposes to validate turbulence models and
numerical methods the availability of DNS results at relatively high Reynolds numbers is of ex-
treme importance. Thus, a new complete DNS simulation at Reh = 7235 (based on the cube
height and the bulk velocity) has been performed on MareNostrum supercomputer using 300
CPUs. To do so, a new parallel Poisson solver [2] for fully-3D parallelepipedic geometries has
been used. However, at high Re-number, DNS simulations are not feasible.
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In this context, a dynamically less complex mathematical formulation is sought. In the quest
for such a formulation, we consider regularizations (smooth approximations) of the nonlinear
convective term. The first outstanding approach in this direction goes back to Leray [3]; the
Navier-Stokes-αmodel also forms an example of regularization modelling (see [4], for instance).
The regularization methods basically alter the convective terms to reduce the production of small
scales of motion. In doing so, we proposed to preserve the symmetry and conservation properties
of the convective terms exactly [5]. This requirement yielded a family of symmetry-preserving
regularization models [5]: a novel class of regularizations that restrain the convective production
of smaller and smaller scales of motion in an unconditional stable manner, meaning that the
velocity can not blow up in the energy-norm (in 2D also: enstrophy-norm). The numerical
algorithm used to solve the governing equations preserves the conservation properties too [6]
and is therefore well-suited to test the proposed simulation model.
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Figure 1: Scalability test of the 3D Poisson solver: number of MG iterations with mesh growth

2. Governing equations and numerical methods for DNS

The non-dimensional incompressible Navier-Stokes equations in a parallelepipedic domain
Ω = (0, Lx) × (0, Ly) × (0, Lz) ⊂ R

3 in primitive variables are considered

∂u
∂t
+ (u · ∇) u =

1
Re
∆u − ∇p ; ∇ · u = 0 (1)

where Re is the non-dimensional Reynolds number. Equations (1) are discretized on a stag-
gered grid in space by symmetry-preserving schemes [6]. For the temporal discretization, a fully
explicit dynamic second-order one-leg scheme is used for both convective and diffusive terms.
Finally, to solve the pressure-velocity coupling a classical fractional step projection method is
used. Further details about the time-integration method can be found in [7]. Regarding the Pois-
son solver, a novel approach for fully-3D parallelepipedic geometries has been used. The solver,
named MG-KSFD, is based on a two-level Multigrid (MG) method. As a second-level solver we
use KSFD [8], a solver for 3D problems with one uniformly meshed periodic direction. Then,
a CG with a local band-LU preconditioner is used as smoother. Scalability test for the DNS
simulation described in the following section is displayed in figure 1. For further details about
the Poisson solver the reader is referred to our previous work [2].
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3. DNS of a wall-mounted cube at Reh = 7235

Turbulent flow around a wall-mounted cube in a channel flow has been chosen as the first
demonstrative DNS application for the MG-KSFD solver. Despite the simple geometry, several
drawbacks limit the DNS simulation of flows around 3D bluff obstacles:

• Region around the obstacle demands finer grid. Thus, arbitrary meshing is desirable to
achieve the required resolution without wasting computational resources in order regions.

• Additionally, the presence of a 3D bluff obstacle itself does not allow to apply directly an
FFT-based method (unless some immersed boundary method is used).

The geometry of the wall-mounted cube in a channel is displayed in figure 2 (left). The com-
putational domain is 17h × 6h × 3h in the streamwise, spanwise and normal to the channel wall
directions where h is the cube height. The upstream face of the cube is located at 7h from the
inlet. For the sake of simplicity1 the following analytical profile has been prescribed at the inlet

U+ = U/uτ = min
�

y+, k ln y+ + B
�

; V+ = W+ = 0 (2)

where y+ = (y/H)Reτ, uτ = Reτν/H, k = 0.25 and B = 5.0. H is the channel half-height (in
our case H = 1.5h). Convective boundary conditions are imposed at the outflow. Global mass
conservation is forced through a minor2 correction of the outflow conditions. Non-slip boundary
conditions are imposed at the channel and at the obstacle surfaces. Periodic boundary conditions
are imposed in the y-direction.

4. Turbulence modelling: C4-regularization

Since computational costs of DNS simulations are prohibitive, a dynamically less complex
mathematical formulation is needed. In the quest for such formulation, we consider regulariza-
tions (smooth approximations) of the non-linear convective term. Here, we restrict ourselves to
the C4 approximation (see [5], for details): the convective term in the Navier-Stokes equations is
then replaced by the following O(ǫ4)-accurate smooth approximation C4(u, v) given by

C4(u, v) = C(u, v) + C(u, v′) + C(u′, v) (3)

where C(u, v) = (u · ∇) v represents the convective operator. Note that here a prime indicates
the residual of the filter, e.g. u′ = u − u, which can be explicitly evaluated, and (·) represents a
symmetric linear filter with filter length ǫ. Therefore, the governing equations result to

∂tu + C4(u, u) =
1

Re
∆u − ∇p + f ; ∇ · u = 0 (4)

Note that the C4 approximation is also a skew-symmetric operator like the original convective
operator. Hence, the same inviscid invariants -kinetic energy, enstrophy in 2D and helicity- than
the original Navier-Stokes equations are preserved for the new set of partial differential equations
to be solved (4).

1Influence of inflow boundary conditions has been studied. Transient fully-developed channel flow, channel flow
averaged profile and analytic profile (2) have been considered. It was found that for cube locations far enough from the
inlet (� 5h, for the range of Reτ-number studied) no significant differents are observed. Therefore, since the analytical
profile is the simplest and easiest-to-reproduce we adopted this inlet boundary conditions.

2In practice, several orders of magnitude lower than velocity values.
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Figure 2: Left: geometry of the wall-mounted cube in a channel. Right: Instantaneous pressure iso-surfaces with
streamlines.

4.1. On the dynamic determination of the filter length
Since now the performance of the C4 approximation has been successfully tested for a rel-

atively wide variety of configurations: a turbulent channel flow [5], a plane impinging jet [9]
and an air-filled differentially heated cavity (DHC) of height aspect ratio A = 4 at Ra-numbers
1010 [10] and 1011 [11] by means of direct comparison with the DNS results. In the latter cases,
the filter width ǫ was treated as a parameter. Then, the value of ǫ was prescribed in advanced.

In the present work we propose to determine ǫ dynamically with the requirement that the
vortex stretching must be stopped at the scale set by the grid. The idea behind is to modify
convective operator sufficiently to guarantee that the following inequality is hold

λk(ǫ) − νk2
≤ 0 (5)

where λk(ǫ) = ωk · C4(ω, u)/(ωk ·ωk) is the Rayleigh quotient of the vortex-stretching at the grid
scale, k = π/h. In practice, the value of λk has been bounded by the largest (positive) eigenvalue
of the straintensor S,

λk(ǫ) ≤ f4,k (ǫ) λmax (S) (6)

For the C4-approximation the damping function, 0 < f4,k ≤ 1, at the highest frequency is given
by 3ĝ2

k(ǫ) − 2ĝ3
k(ǫ) (see [5], for details), where 0 < ĝk(ǫ) ≤ 1 is the transfer function of the linear

filter. Therefore, it suffices that the following inequality be locally hold

3ĝ2
k(ǫ) − 2ĝ3

k(ǫ) ≤
νk2

λmax (S)
−→ ĝk(ǫ) −→ ǫ (7)

to guarantee that the vortex-stretching mechanism is stopped at the smallest grid scale.
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5. Conclusions

A new complete DNS simulation of a wall-mounted cube on a channel flow at Reh = 7235
has been carried out on the MareNostrum supercomputer using 300 CPUs. To do so, the fully-3D
Poisson solver proposed in our previous work [2] has been used on an arbitrarily meshed 3D grid
with ∼ 16 × 106 points.

On the other hand, since DNS simulations are not feasible for real-world applications, a novel
turbulence modelling approach has been proposed. It consists on a regularization of the non-
linear convective terms with the requirement that the symmetry and conservation properties must
be exactly preserved. This yielded a novel class of regularization named symmetry-preserving
regularization [5]. In the initial approach [5, 9, 10] the value of the filter length, ǫ, was prescribed
in advanced. Instead, here we propose a dynamical method to determine ǫ with the requirement
that the vortex-stretching mechanism must be stopped at the smallest grid scale. Therefore, the
proposed method constitutes a parameter-free turbulence model. Moreover, since no ad hoc
phenomenological arguments that can not be formally derived for the Navier-Stokes equations
are used it suggest that this method should be valid for other configurations.

A direct comparison between the modelled results and the DNS reference results will be
presented in the final paper and the conference. Further details about the parallelization of the
code and the Poisson solver will be also discussed.
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Abstract: Parallel simulations of air flow inside an aspiration chamber were performed with 
Fluent CFD software. The mesh for 3-D geometry contains 2.6 million nodes, and computa-
tions were carried out with the number of processors NCPU = 1, 2 and 4. Transport of aver-
aged flow quantities was approximated by Reynolds-averaged Navier–Stokes (RANS) equa-
tions. The goal of the present study is to analyze the correlation of computational time with 
number of processors in the particular geometry of an aspiration chamber in order to assess ef-
fectiveness of Fluent parallelization in the context of cluster machine architecture. 
Keywords: CFD, parallel computing, Fluent, RANS. 

 

1. INTRODUCTION 

One of the important scientific and practical problems of industrial ecology is development of aspiration systems 
with low energy intensity. The main element of the aspiration system is the local ventilation suction unit which is 
used to trap polluting substances close to the source. In ventilation suction devices of closed type (aspiration cham-
bers) it is necessary to redirect flow of dust aerosols in the aspiration net; that is, to use an aspiration chamber as an 
area of preliminary separation of air from dust. This requires knowledge of accurate data for air velocity inside the 
chamber as well as behavior of polluting aerosols inside the flow field. Numerically, this information can be ob-
tained with help from commercial CFD software packages such as Fluent. Precise and reliable simulation requires a 
large number of grid points which makes it very time consuming. At this point parallelization becomes a crucial 
element that can significantly reduce required runtime. 

2.  GOVERNING EQUATIONS 

To compute transport of averaged flow quantities in our simulations we use RANS equations with the standard k-ε 
turbulence model. In the averaging process, the solution variables of the exact Navier–Stokes equations are decom-
posed into mean and fluctuating components; the velocity decomposition is: 

                                                           

                                                                , 

 
  (1) 

 
where iu  and iu  are the mean and fluctuating velocity components, respectively, (i = 1,2,3). Pressure and other 
scalar quantities have similar decompositions:  

 
                                                   . 

 
(2) 

 
These decompositions are substituted into the exact instantaneous continuity and momentum equations, and subse-
quent time averaging leads to the usual RANS equations. In a Cartesian coordinate system these are: 
 

                                                                             
(3) 
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           , 

 
(4) 

 
where overbar notation has been suppressed on all but the Reynolds stress terms. 
 
Equations (3) and (4) are the RANS equations; they have the form of the instantaneous Navier–Stokes equations, 
where the velocities and other solution variables are now represented by time-averaged values. (We note that for the 
present simulations for which ρ ≡ const, Eq. (3) is replaced with the divergence-free condition, “·U = 0, where  
U ≡ (u1, u2, u3)T, and the divergence on the right hand side of (4) is omitted.) 
 
 Additional terms of the form 
 

                                                                                   
 
appear in the time-averaged equations and bring the effects of turbulence into the formulation. There are no funda-
mental equations for these terms, but Fluent provides numerous models. Here we employ the so-called “standard” k-
ε model (see, e.g., [1,2] for details). 
 

3.  MODEL DEFINITION 

To perform the simulations a 3-D grid of the aspiration chamber with inlet and outlet was generated using the Fluent 
grid generator Gambit. Geometrical and physical parameters of the chamber are shown in Fig. 1. The generated 3-D 
grid displayed in Fig. 2 contains 2.6 million nodes. These are spaced in a non-uniform manner to help in resolving 
boundary-layer phenomena, as seen in the figure. Although this is formally an unstructured grid, all cells are paral-
lelepipeds, so, in principle, direct conversion to a structural grid is possible. 

  

 

Fig. 1: Parameters of the aspiration chamber. 
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Fig. 2: Schematic representation of the 3-D grid of the aspiration chamber. 

 

The inlet velocity is specified by its magnitude normal to the boundary; the fluid is air. The main physical parame-
ters of the simulations are collected in the following table. 

Table 1:  Flow simulation parameters 

Parameter Numerical Value Units 
        Velocity magnitude 3.9 m/s 
        Turbulent Kinetic Energy 1.0 m2/s2 
        Turbulent Dissipation Rate 1.0 m2/s3 
        Air density 1.225 kg/m3 
        Air viscosity 1.7894E-05 kg/m-s 

 

4.  PARALLELIZATION IN FLUENT 

Fluent’s parallel solver allows simulations using multiple processors that may be executing on the same computer, 
or on different computers in a network.  Parallel processing in Fluent involves an interaction between Fluent, a host 
process, and a set of compute-node processes. Fluent interacts with the host process and the collection of compute 
nodes using a utility called cortex that manages Fluent’s user interface and basic graphical functions. Fluent uses 
MPI parallelization on both clusters and shared-memory multiprocessor machines, but there is little control available 
to the user other than specifying a desired number of processors. (See [3] for detailed descriptions.) 

5.  RESULTS 

The computations reported here were carried out on an IBM cluster employing 340 dual-core Intel processors. But 
only a maximum of 8 of these are available for Fluent applications.  Streamlines from the steady flow are shown in 
Fig. 3, and these are at least in qualitative agreement with physical expectations. In particular, one can observe re-
gions of recirculation in at least some of the expected locations. On the other hand, accuracy, per se, of these calcu-
lations is still subject to verification. LES runs are in progress, and these should provide some data against which 
these RANS calculations can be checked. 
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Fig. 3: Streamlines of air flow inside the chamber.  
 

Air flow simulation through the aspiration chamber was performed for number of processors  NCPU = 1, 2 and 4. 
These results are summarized in Table 2 in terms of wall-clock time. In Fig. 4 we display the corresponding parallel 
speed ups. 
 

Table 2:  Simulation time vs. the number of processors. 

NCPU Simulation Time 
1 45 h, 01 min 
2 26 h, 16 min 
4 17 h, 41 min 

 
 

 

Fig. 4: Fluent speed up. 
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It is clear that speed ups begin to deteriorate significantly already with only four processors—a result similar to that 
reported in [4] using open MP with a Fortran 90 code on the same IBM system.  
These preliminary results will be further extended in the final paper by using three different mesh sizes to represent 
the aspiration chamber.  The simulations will be done with the number of processors NCPU = 1,2,4 and 8. We will 
also report results when large eddy simulation (LES) is used as the turbulence modeling technique. We believe this 
should provide a quite thorough assessment of parallel performance of Fluent for practical problems on IBM clus-
ters. 
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Abstract: Aeroacoustic waves from supersonic jet impinging on an inclined flat plate is 
computed with the high speed parallel computers for improving the prediction of the acoustic 
waves from rocket plumes.  For the parallelization, openMP and MPI techniques are used. 
From the results, three kinds of acoustic waves are emitted; 1) acoustic waves from the jet-
shear layer before impinging, 2) acoustic waves from the impinging, and 3) acoustic waves 
form the jet-shear layer after impinging. The second kind of acoustic wave has not been well-
modeled one for the prediction of the acoustic waves from the rocket plume. This is clarified 
for the first time with the very high speed parallel computers. 
Keywords: computational aeroacoustics, jet acoustics, jet impinging, parallelization, rocket 
plume. 

 

1. INTRODUCTION 

A rocket plume emits very strong acoustic waves, which possibly damage the payload such as artificial satellites or 
explores. Therefore, the accurate prediction of pressure level of acoustic waves is needed.  Thus far, the empirical 
prediction method presented in NASA-SP8072[1] is used. This empirical prediction method has the strong 
assumption in which the free-jet acoustic wave sources are located along the predicted jet-path. This leads to its 
insufficient prediction accuracy for some rocket launch sites.  

Computational fluid dynamics (CFD) and computational aeroacoustics (CAA) are now rapidly improving their 
accuracy due to the high speed computer and high resolution schemes. The use of CFD/CAA will be cure for the 
prediction of the acoustic waves from a rocket plume. For building the accurate prediction methods for the acoustic 
waves from a rocket plume, Nonomura and Fujii[2-6] conducted the computations of a supersonic free jet with a 
high-order shock capturing scheme. They discussed the characteristics of Mach wave sources in supersonic free jet, 
such as the source position, directivity, frequency characteristics. Now, present authors conducted the CFD/CAA of 
a supersonic jet impinging on an inclined flat plate, which simplifies the rocket launch configuration. These 
computations use the large-eddy simulation (LES) for resolving turbulence flow-fields and acoustic wave generation, 
which requires very fine resolutions.  Uses of a high-order shock capturing scheme and 32 to 512 CPUs parallel 
computation allow us to conduct such a highly resolved computation.  In this presentation, the analysis of a 
supersonic impinging to an inclined flat plate, which is based on the high resolution schemes and highly parallelized 
computations, is presented.   

2. COMPUTATIONAL CONDITIONS 

In this analysis, air, of which specific heat ratio γ is 1.4, is used as jet and ambient fluid. The physical quantities are 
nondimensionalized by the states at the nozzle throat. Following four parameters are chosen to represent the jet-
condition; ideally expanded Mach number MJ, designed exit Mach number MD, Reynolds number based on the 
nozzle throat diameter Re, temperature ratio TRc In the present research, TRc is defined as the ratio of the chamber 
temperature to the ambient temperature. In addition, we have two geometric parameters, θ and L/D, where as θ is the 
angle of inclination of the flat plate, L is the distance from nozzle exit to the flab plate on axis, and D is the nozzle 
diameter as shown in Fig. 1. 
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Fig. 1: Definition of geometric parameters 

In this paper, the results of the case whose parameters, MJ=2.0, MD=2.0 Re=105, TRc=1 θ=45[deg] and L/D=5.0 is 
presented.  Although Mach number and Reynolds number used in this study are relatively low compared with actual 
rocket plume condition, they allow us to discuss the characteristics of Mach waves, because the Mach number is 
high enough to emit the Mach waves and Reynolds number does not have strong effects on Mach wave 
characteristics except for source positions at the Re>105. 

3. NUMERICAL METHODS AND PARALLELIZATION 

3.1 Numerical Methods 

The governing equations are three-dimensional compressive Navier-Stokes equations. Length, density, and velocity 
are non-dimensionalized respectively by the diameter, the density, and the sound velocity of the nozzle throat.  

For the convection term discretization, 7th-order WCNS[7] is employed. In the flux evaluation procedure, SHUS[8] 
is adopted. WCNS[7,9,10] is a shock capturing high-order scheme which was developed as a combination scheme of 
WENO and a compact scheme. In this research, the seventh order upwind WENO-like cell-node to cell-center 
interpolation for conservative variables and the eighth order explicit cell-center to cell-node difference scheme, are 
used as Nonomura et al. did.[7] A special treatment for computation of metrics proposed by Nonomura et al.[11] is 
adopted to keep the geometric conservation law. Furthermore, in order to achieve more high resolution, a relative 
limiter[12] is employed for WCNS smooth indicator. Now, threshold of relative limiter R is selected to be 5. 
Moreover, a few modifications for achieving high resolution and low computational costs are implemented in 
WCNS as Reference[13].  

For the discretization of viscous term, the sixth-order central difference scheme is employed. Any sub-grid scale 
models are not used, because the MILES idea is adopted.[14]  

The second-order backward differencing is converged by three sub-iterations of ADI-SGS scheme is used for the 
time-integration, whereas ADI-SGS scheme is based on the idea of theFF-SGS scheme[15]. Time stepping is set to 
0.005 which corresponds to 10 for the maximum Courant number, and less than 1 for the Courant number in the jet-
shear-layer.

3.2 Computational Grids 

The computational region employed in this study is shown in Fig. 2. The buffer region is set for avoiding non-
physical acoustic wave emission or reflections. The present computational grid system is shown in Fig. 3. The whole 
computational domain is divided into 11 or 128 zones (grid lines in the different 11 zones are drawn with different 
depth) for grid topology or MPI parallelization as discussed below. 
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Fig. 2 Computational domain.                          Fig. 3 Computational grids. Left: side view. Right: top view. 

3.3 Parallelization 

We used SX6(8CPUs/node) by NEC or FX1(4cores/node) by Fujitsu in JAXA. On SX6, 4 process MPI and 8 
process openMP parallelizations are conducted, resulting in 32 CPUs parallelization. On FX1, 128 node MPI and 4 
process openMP parallelizations are conducted, resulting in 512 cores parallelization. Zonal decomposition is used 
for MPI parallelization, while do(for)-loops are parallelized with openMP parallelization. For SX6, the computation 
presented in this paper takes 24,000CPU hours. Figure 4 shows that these openMP and MPI parallelizations have 
nearly 80 % efficiency in 8-32CPU of SX6.  
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Fig. 4 Parallelization efficiency in SX6 system. 

4. Computational Results 

Figure 5 shows instantaneous flow-fields and acoustic-fields of the present computation.  Acoustic waves are 
emitted from the various part of the impinging supersonic jet; a upstream region of impingement, an impingement 
region, and a downstream region of impingement.  The overall sound pressure level (OASPL) distribution of near-
field shown in Fig. 6 indicates clear acoustic wave generations as discussed above. In this study, the acoustic waves 
are decomposed into three kinds according to the source position and directivity; (i) Mach waves emitted from 
shear-layer at the upstream region of impingement, (ii) acoustic waves emitted from the impingement region, and 
(iii) Mach waves emitted from shear-layer at the downstream region of impingement.  The acoustic waves (i) and 
(iii), seems to be Mach waves because of their directivity, which are observed to be strong towards the downstream 
region at near-field. On the other hand, the acoustic waves (ii) do not seem Mach wave because it goes upstream 
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region. These acoustic waves cannot be predicted based on the empirical prediction method, in which the free-jet 
acoustic wave sources are located along the predicted jet-path. 

From the highly resolved simulation with the high speed parallel computers, the phenomenon which is not well-
modeled in the empirical prediction method is clarified. This will help us to build a more accurate prediction method.  

Fig. 5 Instantaneous flow-field and acoustic fields.                         Fig. 6 Overall SPL distributions. 
                  (dynamic pressure and static pressure) 

4. CONCLUSIONS 

In this presentation, analysis of the supersonic jet impinging to the inclined flat plat is presented. A high-order 
scheme and high speed parallel computers enable us to conduct highly-resolved simulations. Simulation results 
clarify the phenomenon, the generation of acoustic waves (ii), which is not well-modeled in the empirical prediction 
method. This result helps us to build a more reliable prediction method for rocket plume acoustics.  

Now, we can compute the rocket plume acoustics at 0.005 < St < 0.5, whereas the requirement Strouhal number in 
design is 0.005 < St < 5. There is 10 times behind between the requirement and the current capable Strouhal number. 
This 10 times behind in Strouhal number, corresponding to 10,000 times in computational costs,  will be covered by 
the next-generation high speed parallel computers. 
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Abstract: We present a numerical method for simulating the propagation of acous-

tic waves in a three-dimensional model of the sun. The simulations are used to test

and improve helioseismology techniques which provide means for studying the solar

interior. Selected results are presented. We also provide some details on the parallel

implementation.

Keywords: Acoustics, astrophysics, helioseismology.

1. INTRODUCTION

The dynamics and interior structure of the sun is a challenging and fascinating subject and is ac-

tively studied theoretically, numerically, and observationally. Nearly all recent advancements in our

understanding of the interior structure and evolution of the sun have been made by studying solar

oscillation. Waves are excited by the vigorous convection near the solar surface, travel throughout

the complex interior of the sun, and are affected by a spatially varying wave speed and to a lesser

extend flows. Oscillations at the solar surface associated with these waves can be observed through

ground- and space-based telescopes, such as the Michelson Doppler Imager (MDI ) onboard the So-

lar and Heliospheric Observatory (SOHO) spacecraft, and can be used to infer information about

the sun’s internal structure and composition. This is the science of helioseismology. For a review,

see [1]. In general, the inferences are based on simplified models of wave propagation. For instance,

the ray approximation is often used. Studying wave propagation in the sun through numerical sim-

ulations not only helps to advance our understanding of solar oscillations, but more importantly,

the simulations can be used to test and improve our helioseismic inferences.

2. MATHEMATICAL MODEL AND NUMERICAL TECHNIQUE

Simulating the three-dimensional wavefield in a large and complex object as the sun is challenging.

Ideally, we would like to simulate the full compressible magneto-hydrodynamic equations to solve
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Fig. 1.— Snapshot of the radial velocity at 300 km above the photosphere of acoustic oscillations

in a high-resolution simulation with spherical degrees, l, up to 341.

for the flows and waves in the sun, but this is unrealistic at the present time and for the foreseeable

future due to the numerical cost. Fortunately, the problem of wave propagation can be approx-

imately separated from the flow. Except for the very near surface region, flow velocities in the

sun are much smaller than the speed of sound and therefore a perturbation approach is applicable.

Acoustic waves can be treated here as small perturbations traveling through a base flow. The base

flow itself can be either artificially prescribed or it can be provided by other simulations.

Several approximation are used to derive a trackable set of equations. The oscillations are assumed

to be adiabatic, and are driven by randomly forcing density perturbations near the surface. Per-

turbations of the gravitational potential are neglected. In order to make the linearized equations

convectively stable, we also neglect the entropy gradient of the background model. For simplicity,

we here show the linearized equations for the case of a background state with zero flow velocities,

but these equations account for the more important spatial variation of the wave speed:

∂tρ
′ = −Φ′ + S − χρ′, (1)

∂tΦ
′ = −∆c2ρ′ + ∇ · ρ′g0 − χΦ′. (2)

Here, ρ′ and Φ′ are the density perturbations and the divergence of the momentum perturbations

associated with the waves, respectively. S is a random function mimicking acoustic sources, c is

the background sound speed, and g0 is the acceleration due to gravity. The damping terms with

a coefficient χ, which is zero in the interior and increases above the solar surface, implement an

absorbing buffer layer that provides non-reflecting boundary conditions at the upper boundary. For

the unperturbed background model of the Sun, we use standard solar model S of [2] matched to a

model for the chromosphere [3].
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The damping terms are absorbed into the left-hand-side by use of an integrating factor and are

therefore treated implicitly. All other right-hand-side terms are treated explicitly. A staggered Yee

scheme is used for time integration, and a pseudo-spectral spherical harmonics / B-spline scheme is

used for spatial discretization. The variables are expanded in spherical harmonic functions, Y l,m,

for their angular dependencies (angles θ and φ) and fourth order B-splines, Bj , in radial direction

(r), e.g.

ρ′(r, θ, φ, t) =

mmax�
m=−mmax

lmax�

l=|m|

jmax�

j=0

ρ̂′j,l,m(t)Bj(r)Y l,m(θ, φ), (3)

with time-dependent coefficients ρ̂′j,l,m(t). All of the operations are performed in this spherical

harmonic (l, m) / B-spline (j) coefficient space except for computing the c2

0
ρ′-term. This is more

efficiently done in (θ, φ) / B-spline (j) space using the two-thirds rule for proper dealiasing. The

radial resolution of the B-spline method is varied proportionally to the local speed of sound, i.e. the

generating knot points are closely spaced near the surface (where the sound speed is small), and

are coarsely spaced in the deep interior (where the sound speed is large). Typically, simulations

are run with a dealiased lmax of 170 or higher and at least 300 B-splines in the radial direction.

The fast spherical harmonic transformation used here comes from an existing code developed for

simulating convection in spherical shells, see [4,5].

The simulation code has been used on the NASA supercomputers Columbia and Pleiades, and uses

MPI (Message Passing Interface) for inter-processor communication. As mentioned before, most

of the computations are performed on data in spherical harmonic (l, m) / B-spline (j) coefficient

space. In this case, the data for all l’s and j’s are in place, and the m’s are distributed over the

different MPI processes. In (θ, φ) / B-spline (j) space, the θ index is distributed, and φ and j are

in place. Transformations from one storage scheme to the other require MPI messages from each

compute process to all other compute processes. The code shows excellent parallel efficiency as

long as the number of compute processes is not significantly larger than about half of lmax. Beyond

this number, the domain decomposition used here results in poor load balancing. Consequently, for

a typical lmax of 170, we usually use a total of 88 MPI processes of which 87 are compute processes

and 1 is used purely for input-output (IO).

3. RESULTS

The main output of these simulations are time series of oscillation velocities at or slightly above the

solar surface. These time series are used as artificial data for testing and developing helioseismic

inferences. A snapshot of such data is shown in Figure 1. The data is very similar to what is

obtained from actual solar observation in which the line-of-sight velocity at some level near the

solar surface is measured through doppler effect.

Solar oscillations are trapped inside the sun through reflection at the surface and refraction in the

deeper interior, and therefore exhibit resonances. Figure 2 presents the oscillation power spectrum
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Fig. 2.— Power spectral density of the radial velocity at 300 km above the photospheric level from

a solar acoustics simulations (in color; dark blue denotes zero and red denotes high power density).

For comparison, white dots show the frequencies of the resonant acoustic modes measured from

actual solar observations.

Fig. 3.— Far-side images computed for a simulation with a single modeled sunspot region at the

backside of the sun. (a) and (b) are images derived through two different time-distance helioseis-

mology techniques. Both recover the sunspot region at the center of the solar far-side, but with

different amounts of spurious signal.
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as a function of spherical harmonic degree, l, computed for one of the performed simulations. The

resonant frequencies of the ridges seen here correspond well with the frequencies obtained from

actual solar observations.

One interesting helioseismic technique is so-called far-side imaging which is important for space

weather forecasting. Here, one observes the oscillations at the near-side of the sun, the side facing

towards earth, and tries to detect sunspot regions on the far-side, the side of the sun facing away

from earth and not accessible to direct observations. This is possible because acoustic waves of a

certain frequency and wavelength range can travel from the near-side to the far-side and back to the

near-side, and because sunspot regions are characterized by sound speed profiles that are different

from quiet sun regions. By measuring time-distance correlations of the velocity perturbations on

the front-side, one can detect travel time variations of these waves that are associated with regions

of modified sound speed on the far-side sun. Figure 3 shows such far-side images computed by

two different techniques. In this simulation, a model of a sunspot region has been placed at the

far-side of the sun. For more details, see [6]. As in actual observations, only the oscillations on the

front-side are used in the far-side imaging methods. Yet, they are able to detect the model sunspot

region rather well.
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Abstract: Two- and three-dimensional simulation results are presented that investigate at great 
accuracy the temporal evolution of Mach reflection sub-structure patterns intrinsic to gaseous 
detonation waves. High local resolution is achieved by utilizing a distributed memory parallel 
shock-capturing finite volume code that employs blockstructured dynamic mesh adaptation.  
The computational approach and the implemented parallelization strategy are discussed and 
benchmarked. 
Keywords: Supersonic combustion, Mach reection, structured adaptive mesh renement. 

 

1. INTRODUCTION 

The propagation of detonation waves in gaseous media is a complex multi-scale phenomenon. While gaseous 
detonations propagate at supersonic velocities between 1500 and 2500 m/s, they inhibit non-neglectable instationary 
sub-structures in the millimeter range. Transverse pressure waves propagate perpendicular to the detonation front 
forming triple points with enhanced chemical reaction. The hydrodynamic ow pattern in a triple point is a Mach 
reection phenomenon under transient conditions. Depending on the local ow conditions, both double-Mach (aka 
“strong”) and transitional Mach reection (“weak”) structures have been observed in experiments [5].  

In the present paper, we discuss results from large-scale parallel simulations of Chapman-Jouguet (CJ) detonations 
in low-pressure hydrogen-oxygen with high argon dilution. In free space, the triple point movement in such mixtures 
is very regular leading to a repetitive trajectory pattern of regular “detonation cells”. While the detailed 
hydrodynamic structure of such detonations has been fairly well analyzed by means of numerical simulation for 
two-dimensional rectangular channels and classied to be of double-Mach reection type [7, 6], open questions 
remain for three space dimensions and non-rectangular geometries.  

2. COMPUTATIONAL METHOD 

The appropriate model for detonation propagation in premixed gases with realistic chemistry is the inviscid Euler 
equations for multiple thermally perfect species with reactive source terms that read  

       ,0))(()(,0)()(,)( =+⋅∇+∂=∇+⊗⋅∇+∂=⋅∇+∂ upEEpuuuWu ttiiiit
rrrr

&
r ρρρρωρρ            (1) 

with i =1,...,K. We assume that all K species are ideal gases in thermal equilibrium and that the hydrostatic pressure 
is given as the sum of the partial pressures pi = RTρi/Wi with R denoting the universal gas constant and Wi the 
molecular weight, respectively. The evaluation of the last equation requires the previous calculation of the 
temperature T. As detailed chemical kinetics necessitate species with temperature-dependent material properties, 
each evaluation of T involves the approximative solution of an implicit equation by Newton iteration [4]. In here, the 
chemical production rates are modeled with a hydrogen-oxygen reaction mechanism that considers 34 elementary 
reactions and the 9 species H, O, OH, H2, O2, H2O, HO2, H2O2 and Ar.  

We employ a time-operator splitting approach to decouple hydrodynamic transport and chemical reaction 
numerically. A semi-implicit Rosenbrock-Wanner method is used to integrate the kinetics within each nite volume 
cell. Temperature-dependent material properties are derived from look-up tables that are constructed during startup 
of the computational code. The expensive reaction rate expressions are evaluated by a mechanism-specic Fortran-
77 function, which is produced by a source code generator on top of the Chemkin-II library in advance.  

Since detonations involve supersonic shock waves, we use a nite volume discretization that achieves proper 
upwinding in all characteristic elds. The scheme utilizes a quasi-one-dimensional approximate Riemann solver of 
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Roe-type and is extended to multiple space dimensions via the method of fractional steps. Special corrections are 
applied to avoid unphysical total densities and internal energies near vacuum due to the Roe linearization, to ensure 
positive mass fractions, and to prevent the disastrous carbuncle phenomenon. The MUSCL1-Hancock variable 
extrapolation technique is employed to construct a second-order method. The upwind scheme including all 
modications is detailed in [4].  

In order to consider geometrically complex moving boundaries within an originally Cartesian upwind method, we 
use some of the nite volume cells as ghost cells to enforce immersed boundary conditions. Their values are set 
immediately before the original numerical update to model rigid embedded walls. The boundary geometry is 
mapped onto the Cartesian mesh by employing a scalar level set function that stores the signed distance function. A 
cell is considered to be an interior cell if the distance in the midpoint is positive and is treated as exterior otherwise. 
The numerical stencil by itself is not modied. Slight approximation errors due to this approach are alleviated by 
dynamic mesh adaptation. The detailed boundary incorporation for (1) can be found in [3].  

The accurate numerical simulation of detonation waves requires a high temporal and spatial resolution particular 
near the detonation front. In our approach, dynamic mesh adaptation is provided by the structured adaptive mesh 
renement (SAMR) algorithm after Berger and Collela [1]. The core idea of the SAMR approach is to cluster cells 
agged for renement with a special algorithm into cache-coherent, rectangular sub-blocks that are enclosed (in 
here) by two layers of ghost cells. Ghost cells are set to represent physical boundary conditions, by space-time 
interpolation at level boundaries, and by synchronization with adjacent blocks of the same level. We have 
implemented the SAMR algorithm in a generic, dimension-independent object-oriented framework in C++. It is 
called AMROC (Adaptive Mesh Renement in Object-oriented C++) and is free of charge for scientic use [2]. At 
present, the SAMR core of AMROC consists of approximately 46,000 lines of code in C++ and approximately 
6,000 lines for visualization and data conversion. For computational efficiency, the single-block routines (uid 
dynamics and chemical kinetics numerical update, prolongation, restriction) are implemented in Fortran-77.  

In the AMROC framework, we follow a rigorous domain decomposition approach, suitable for MPI-based 
distributed memory parallelization, and partition the SAMR hierarchy from the root level on. The accumulated 
workload from all levels of the hierarchy is considered to distribute the root level domain at runtime with a space-
lling curve algorithm [8]. All higher level domains are required to follow the decomposition of the base level, 
which can cause the additional splitting of subgrids. The advantage of the rigorous domain decomposition approach 
is that it is comparably easy to implement, with hierarchy recomposition and subgrid synchronization being the only 
parallel operations, and overall work is well balanced. However, the work on each levels is not perfectly distributed, 
which causes slight delays during subgrid synchronization (in operation Boundary setting). We have found the 
approach well suitable for parallel three-dimensional computations for up to a few hundreds of CPUs. Results from 
a two-dimensional scalability test are depicted in Fig. 1. The simulation approximates the shock-induced combustion 
around a sphere that travels at supersonic speed through a hydrogen-oxygen-argon mixture [3]. The computation is 
carried out in the frame of reference of the body, leading to a steady flow field and mesh refinement, and uses a base 

                                                 
1 Monotone Upstream-centered Schemes for Conservation Laws 

 
Fig. 1: Strong scalability test for the two-dimensional chemically reactive SAMR code. Total time required for one 
full integration and refinement cycle (left) and for the most important operations (right). 



308

21st International Conference on Parallel Computational Fluid Dynamics

 
 

 

mesh of only 70 x 40 cells and 3 additional levels refined by factor 2. The test was run on a cluster of Intel Xeon 3.4 
GHz dual-processors connected with a Gigabyte Ethernet network. As can be inferred from the right graphic of Fig. 
1, the numerical single-block operations for fluid dynamical and chemical kinetics update scale linearly, however 
the expense of the communication-dependent operations for synchronization and hierarchy recomposition remains 
basically constant for larger CPU counts.  

3. RESULTS 

First, we study two-dimensional CJ detonations in H2 : O2 : Ar mixtures of molar ratios 2 : 1 : 7 at initial temperature  
298 K and pressure 10.0 kPa that propagate through smooth elbow pipes of the bending angles j = 15o, 30o, 45o, and 
60o. One-dimensional detonation structure theory after Zel’dovich, von Neumann, and Döring (ZND) predicts a 
detonation velocity of 1638.5 m/s, a von Neumann Pressure of ~270 kPa, and a reaction length of lig ≈ 0.878 mm for 
this mixture.  

In a preparational computation (not shown), the one-dimensional ZND solution is placed on a rectangular two-
dimensional mesh and perturbed, leading to a periodic cellular oscillation with cell width ~1.6 cm. A snapshot of a 
single cell is then reproduced periodically and used to initialize the ow eld with the detonation front 

Fig. 4: j = 15o: formation of new transverse wave and strengthening of the 
corresponding triple point (t = 200 µs, 210 µs, and 220 µs simulated time). 

 

 
Fig. 3: j = 45o: transverse 
detonation wave (t=200, 210 µs). 

 
Fig. 2: Schlieren plot of density on triple point tracks (left) and on renement regions (shaded gray, middle and 
right, successive enlargement into two triple points) for j = 45o and t = 150 µs simulated time.
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approximately 13 cm before the beginning of the curved section. By using a pipe of only 8 cm width a strong 
inuence of the geometry on the detonation front structure can be expected.  

To accommodate a reduction of the induction length when the detonation wave gets compressed, all computations 
use an effective resolution of 67.6 Pts/lig, which is achieved by four additional levels of Cartesian mesh adaptation 
with renement factors 2, 2, 2, and 4. A physically motivated combination of scaled gradients of pressure, density 
and heuristically estimated relative errors in the mass fractions is applied as adaptation criteria [3]. For instance, for 
bend angle j = 60o, with a base mesh of 1200 x 992 cells, the adaptive computation uses approximately 7.1 M to  
3.4 M cells on all and 4.8 M to 1.8 M cells on the highest level instead of ~1,219 M in the uniform case. The 
calculations were run on 64 Intel Xeon 2.4 GHz-dual-processor nodes with Quadrics interconnect and required 
nevertheless ~70,000 h CPU each (~23 days wall time). The extraordinary high efficiency in capturing only the 
essential features near the detonation front is illustrated in Fig. 2, in which a double-Mach reection pattern is 
clearly resolved. Note that the reaction zone appears in Fig. 2 as the diffused black line following the sharp shock 
wave at the head of the detonation front.  

As the detonation propagates through the bends, it gets compressed and consequently over-driven near the outer 
wall, but a shock wave diffraction occurs near the inner wall. For j = 15o, detonation wave expansion and 
compression in the bend only lead to a temporary change in detonation cell size. From j = 30o on, an increasing 
decoupling of leading shock and reaction zone occurs as the shock wave diffraction causes a temperature decrease 
below the limit of detonability. Isolated unreacted pockets can also be observed, cf. Fig. 2. While the decoupling is 
only partial for j = 30o, a temporary detonation failure clearly occurs for j s 45o. A transverse reignition wave 
arises from the successfully transmitted region and reinitiates the detonation in the decoupled area, cf. Fig. 3. The 
triple point intersection between transverse detonation and incident shock forms a double-Mach reection pattern of 
exceptional strength. After leaving the bend, and possibly reigniation, the triple point oscillation at the head of the 
detonation front returns to the original periodicity. An example for the formation and strengthening of new 
transverse waves is depicted for three output time steps in Fig. 4. The triple point traveling from the lower left to the 
upper right corner is initially formed as a weak structure of transitional Mach reection type; through the triple point 
collision in the center of the graphic it strengthens into a double-Mach reection, which can be clearly inferred from 
the characteristic curvature of the subsequent triple point track.  

As a three-dimensional example, we discuss a simulation to analyze the detailed triple point structure for a CJ 
detonation in H2 : O2 : Ar / 2 : 1 : 7 at initially 298 K and pressure 6.67 kPa. The detonation cell width in free space is 

  
Fig. 5: Schlieren plot of the density on renement levels and domain distribution to 128 CPU (indicated by color) in 
the rst (left) and second (right) half of a detonation cell. 



310

21st International Conference on Parallel Computational Fluid Dynamics
 
 

 

then λ ≈
 
3.0 cm [7, 6] and the ZND induction length lig ≈ 1.4 mm. In rectangular three-dimensional domains, the 

triple points manifest themselves as orthogonal triple point lines [9]. A detailed hydrodynamic analysis uncovers 
that, although the detonation velocity is unaltered, the uctuations in pressure, temperature, and therefore induction 
length are considerably larger in 3d than in 2d. The discussed simulation is carried out in a frame of reference 
attached to the detonation front. The domain has the dimensions [0 cm, 10 cm] x [0 cm, 1.5 cm] x [0 cm, 1.5 cm] to 
simulate exactly 1/4 of a regular detonation cell. A constant inow with 1626.9 m/s is applied at the right, outow 
conditions at the left boundary. Symmetry boundary conditions are used at all other sides.  

The computation uses a base mesh of 400 x 24 x 24 and two additional levels of mesh adaptation with renement 
factors 2, 4 giving an effective resolution of 44.8 Pts/ lig. Renement criteria are chosen similarly as before, where 
all renement ags are overall deleted in the range 0 cm < x < 4 cm + v0t with v0 := 20 m/s. After a simulation time 
of ~600 µs a regular cellular oscillation with identical strength in 
y-and z-direction can be observed, cf. Fig. 5. The ne effective 
resolution achieved allowed the unambiguous classication of 
the hydrodynamic ow pattern at triple point lines as the weak 
structure of a transitional Mach reection, which is quite 
remarkable since the same mixture exhibits the strong 
structure of double-Mach reection type in the two-
dimensional case [6, 4] (see also Fig. 2). This computation 
was run on 32 nodes of a Compaq AlphaServer quad-core 
system with high-speed Quadrics interconnect at Los Alamos 
National Laboratories and required ~51,000 h CPU, which 
corresponds to ~16.6 days wall time. A breakdown of the 
compute time is depicted in Table 1. The adaptive computation uses approximately 16.5 M cells on average instead 
of 118 M in the uniform case, cf. upper row of Fig. 5. The lower row of Fig. 5 visualizes by different color the 
domain decompositions of the evolving hierarchy to 128 CPU with the renement levels elevated. These pictures 
illustrate the good stability of the partitioning methodology for small changes in the workload.  
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Table 1:  Breakdown of the compute time for 
the 3d simulation. 

Task % 
Fluid dynamics 37.6 

Chemical kinetics 25.1 
Boundary setting 24.4 
Recomposition 6.6 

Misc. 6.3 
Total [h CPU] ~51,000 
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Abstract: To predict various complicated phenomena in rocket or aero engine combustors 
such as turbulence-flame interaction and fuel atomization, we have developed high-fidelity 
numerical simulation methods based on parallel Large-Eddy Simulation (LES) or Direct 
Numerical Simulation (DNS). The simulations are conducted on the JSS1, which is a new 
large computer system installed at JAXA at FY2008. In this paper, the system configuration 
and features of JSS1 are described and several combustion-related simulation results are 
presented. 
Keywords: Combustion, LES, DNS, Engine combustor, High-fidelity simulation 

 

1. INTRODUCTION 

In aerospace engine development for both rocket engines and jet engines, one of the critical components is a 
combustor. However, phenomena occurring inside the combustor are highly complicated and difficult to observe in 
experiments. Numerical simulations to understand combustion-related phenomena such as flame stabilization, 
flame-turbulence interaction and liquid fuel atomization are becoming possible using high-fidelity numerical 
simulations like parallel Large-Eddy Simulation (LES) or Direct Numerical Simulation (DNS) techniques. In this 
paper, two examples of combustion-related flow field are shown to demonstrate the effectiveness of large-scale 
parallel computation. The new computer system at JAXA is used. 

2. SIMULATION MODEL AND PARALLEL IMPLEMENTATION 

The first simulation deals with hydrogen non-premixed combustion at a supercritical pressure in a rocket combustor. 
LES is used to obtain unsteady solutions. The Soave-Redlich-Kwong equation of state is used to include high-
pressure and low-temperature physical properties [1]. Mixture fraction represents the mixing and combustion and 
the flame is modeled by 1-D flamelet assumption. The numerical scheme is based on AUSM+up and the 
Smagorinsky subgrid model is incorporated. The second simulation solves liquid fuel atomization, which is a key 
process in subcritical liquid-fueled engines. A two-phase flow solver [2] is utilized in a direct simulation context. 
The 3-D incompressible Navier-Stokes equations with surface tension are solved. The surface tension is evaluated 
by the Continuum Surface Force (CSF) method. Pressure is determined by solving the pressure Poisson equation. 
The numerical scheme for solving flow advection is based on the Cubic Interpolated Pseudo-particle (CIP) method. 
The phase interface is captured by the Level Set method and a modified version of Volume-of-Fluid (VOF) method, 
called Multi-interface Advection and Reconstruction Solver (MARS) method, is combined to assure volume 
conservation. For parallel implementation between processes, MPI is applied, whereas on a node where one process 
is allocated with a multicore chip, automatic parallelization based on thread parallelism is applied.  

3. JSS1 

We did these simulations on JSS1: JAXA Supercomputer System 1. The system is described below. 
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3.1 System Configuration 

JSS1 consists of Compute Engine part that has totally 141TFLOPS peak performance, Storage part that has 11PB 
disk and tape devices, and Distributed Environment Consolidation part that realize synthesized user environment 
(Fig. 1). Compute Engine part has four types of system, namely M-, P-, A-, and V-System. Table 1 shows this 
classification. Storage part consists of 1PB RAID5 disk system that has 180 FC link and 25GB/s actual I/O 
performance and 10PB LTO4 libraries that has 40 LTO4 drives and 8 LTO3 drives.  Backbone of Distributed 
Environment Consolidation part is incarnated on SINET3 [3] by using Virtual Private Network (VPN) technology. 
The L-systems, which supply login, compile and debug environment to remote site’s users, and the J-SPACE, which 
is distributed remote file system, are connected to the backbone.  
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Fig. 1:  JSS configuration 

Table 1: Compute Engine classification 

System name M-System P-System A-System V-System 
Processor type Scalar Scalar Scalar Vector 

Processor – memory 
connection type Distributed Distributed Shared Shared 

Usage Unclassified Classified Unclassified Unclassified 
Number of nodes 3,008 384 1 3 
Number of CPUs 3,008 384 32 48 
Number of cores 12,032 1,536 128 48 
Peak TFLOPS 120 15 1.2 4.8 

Total main memory 94TB 6TB 1TB 3TB 
Memory per node 32GB 16GB 1TB 1TB 

Brand Fujitsu FX1 Fujitsu FX1 Fujitsu 
Sparc Enterprise 

M9000 

NEC SX-9 

3.2 Feature of Compute Engine 

M-System is the largest resource in Compute Engine. The system has some features on efficiency for large-scale 
numerical simulations. 
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3.2.1 Multi-core Programming Model 

About FORTRAN’s nested DO-Loop, on conventional scalar parallel computers, the outermost DO-loop should be 
parallelized manually, while M-System parallelizes the innermost DO-loop automatically by the compiler (Fig. 2). 
This feature advocates a new programming model. Figure 3 shows the comparison between the traditional and new 
programming models. Not only M-System but also newly coming parallel computers will have multi-core CPUs. As 
shown in Fig. 3(b), if we use the traditional programming model, each process should be assigned on each core 
manually. On the other hand, the new programming model assigns multiple threads on one node automatically. This 
means that a user does not need to awake to use multi-core CPUs. In addition, well accumulated vectorization 
techniques can be applied to automatic parallelization of the innermost DO-loop.   

DO I=1,100
DO J=1,100

DO K=1,100

ENDDO
ENDDO

ENDDO

Processing

Conventional

M-System

Fig .2:  Parallelization of DO loop 
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P P P P

Core Core Core Core
P P P P
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T T T T
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T T

Interconnect

(a)New

Combination of Process and 
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P : Process : ThreadT

Process
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T T

 
Fig .3:  JSS M-System programming model 

3.2.2 Intra and Inter Node Hardware Barrier Mechanism 

M-System has 3,008 compute nodes and 12,032 cores. Each node contains a quad-core 2.5 GHz SPARC64 VII 
processor and 32GB of memory. As the number of processing elements increases, synchronization overhead time for 
user program and OS process increases. Especially on M-System, because inner DO-loops are automatically 
parallelized, the number of synchronization increases. So speed-up of synchronization should be needed. So M-
System has hardware barrier mechanisms on Intra-node and Inter-node. Figure 4 shows a difference of speed 
between hardware and software barrier mechanisms. From these advantages, M-System has world top class 
sustained performance 91.19% on LINPACK. 
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im
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]
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Fig .4:  Soft barrier vs. Hard barrier 
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3.2.3 Parallel Execution Performance 

In this section, we show the efficiency of parallel execution performance on large numbers of cores.  Table 2 shows 
some parallel applications which were executed on M-System.  From P1 to P5 are real application code in aerospace, 
and P6 is Linpack benchmark program. 

Table 2: Parallel applications 

Code Application field Numerical Method 
P1 Combustion FDM+Chemistry 
P2 Aeronautics FVM(Structured) 
P3 Turbulence FDM+FFT 
P4 Space Plasma PIC 
P5 Aeronautics FVM(unstructured) 
P6 Linpack (High Performance Linpack) 

Table 3 shows the result of efficiency.  This efficiency measured scale-up-problem-size case, not a fixed-problem-
size case.  Efficiency e is defined as follows; 

2 31
1 2 32 3

1 1 2 3

b ba
a b aa ae

b b a b

⎛ ⎞∗⎜ ⎟ ∗ ∗⎝ ⎠= =
∗ ∗

  (1) 

Here, b2/a2 is scale-up of problem size, b3/a3 is scale-up of computing resource, namely core resource.  As one can 
see in Table 3, the efficiency is from 62% to 91% in using over 2,000 cores in real aerospace applications.  
Measuring in Linpack program, the efficiency comes to 97%.  That means M-System has good parallel performance 
on large numbers of cores. 

Table 3: Result of parallel execution performance 

Code 

Execution on single node Execution on multi node  
Efficiency 

 
 
e 

Exec 
time 
[s] 
a1 

# of grids 
( # of floating 

point operations) 
a2 

# of 
cores

 
a3 

Exec time 
[s] 

 
b1 

# of grids 
(# of floating 

point 
operations) 

b2 

# of 
cores 

 
b3 

P1 131.0 1,728,000 4 143.3 1,285,632,000 2,976 0.914
P2 71.0 512,000 4 91.5 384,000,000 3,000 0.776
P3 346.8 1,572,864 4 491.7 805,306,368 2,048 0.705
P4 164.0 65,536 4 193.0 49,152,000 3,000 0.850
P5 142.0 4,173 4 181.6 2,492,921 3,000 0.622
P6 3566.4 (1.3361*1014) 4 218376.38 (2.4101*1019) 12,032 0.979

 

4. RESULTS AND DISCUSSION 

Figure 5 shows an LES result in a model LOX/GH2 (liquid oxygen and gaseous hydrogen) rocket engine combustor. 
The simulation was conducted with 11 million grid points and 36 parallel regions. Very fine vortex structures 
around the nozzle are well captured and the flame spreading angle is in good agreement with the experimental data 
[1]. By using LES, unsteady flame dynamics can be understood. 
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Fig. 5:  Supercritical cryogenic model rocket combustor [4] and the present simulated result. The 

fine structures in green are vortices and the red iso-surface represents T=1000K. 
 

Figure 6 shows a direct simulation result of liquid fuel jet injection under 30atm ambient pressure. The number of 
grid points is 110 million and the computational domain is divided into 64 parallel regions. The injection nozzle 
diameter is 0.1mm and the injection velocity is 100m/s. Surface instability after injection is well captured and 
subsequent formation of ligaments (thread-like structures) and droplets can be observed. This kind of information is 
difficult to obtain in experiments and it is expected to improve our understanding of atomization mechanism and 
modeling. A larger simulation with 6 billion grid points and 1,440 parallel regions is being conducted now to 
examine smaller scale phenomena. 

 
Fig. 6:  Liquid fuel injection simulation 

5. CONCLUSION 

In this paper, the new supercomputer system JSS1 installed at JAXA and simulation results of combustion-related 
flows are briefly introduced. These kinds of complex flow computations are becoming possible with recent faster 
parallel computer performance. For practical engine development applications, understanding complicated 
combustion flow fields by numerical simulation is becoming more and more significant. 
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Abstract: A parallel overset grid method is developed for solution of moving body CFD 
problems using unstructured grids.  The developed overset parallel library is suitable for 
unsteady solution of complex flow fields and complex motions.  It can easily be implemented 
to existing flow solvers with minimum code modifications.  The efficiency of the developed 
library is studied for different number of processers. 
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1. INTRODUCTION 

The overset grid method is used as a method in computational fluid dynamics to simplify the grid generation of 
complex geometries or to enable relative motion between different components.  This method utilizes a set of grids 
to discretize the domain with each component of the grid generated locally around a portion of the geometry.  The 
grids are allowed to overlap without any point-to-point match requirement to each other.  This ability greatly 
simplifies the grid generation process for complex geometries.  

The most implementations of the overset method are based on structured grids [1, 2, 3].  The difficulty of generating 
structured grids around complex geometries is the main disadvantage of this approach.  The most critical issue of the 
structured overset approach has been that the required number of grid points to be overlapped increases fast as the 
complexity of the geometry increases.  During the recent years, unstructured grid flow solvers have been gaining 
popularity because of their flexibility to handle complex geometries.  The unstructured overset grid methods also 
offer additional flexibility to flow problems with multi-component motions. 

The implementation of the overset grid techniques into existing structured and unstructured flow solvers typically 
requires extensive and tedious code modifications.  The modifications required include adding hole cutting, surface 
grid assembly, near-body grid assembly, and off-body grid assembly.  Because most of the overset functions are 
straightforward and essentially duplicated among flow solvers to facilitate rapid implementation of the overset grid 
capability into the flow solvers, two popular libraries: Donor Interpolation Receptor Transaction Library (DIRTLIB) 
[4] and the Structured, Unstructured, and Generalized Grid Assembler (SUGGAR) [5] have been developed in the 
literature.  While these libraries are very useful, there are restrictions in using them for multi-national projects, since 
they are subjected to export control laws.  In this paper, we will present an in-house parallel library developed in 
parallelization of our unstructured overset grid method, OverSun [6], which can be easily coupled with other parallel 
flow solvers.  Applications of the library will be demonstrated for moving-body problems in the full paper.  

The program OverSun has following advantages over others:  
• The hole cutting process is done in a systematic and automatic fashion 
• An efficient search algorithm is used 
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• Instead of using wall boundaries for hole cutting, one cell overlap is used to reduce the computation time 
• Integrating the solvers requires a few changes instead of the extensive function calls needed with DIRTLIB 

and SUGGAR 
• Modeling of complex geometries and movements are easy 
• Once a grid around a moving body (minor grid) is generated, it is coupled with the background grid (major 

grid) for forming a single grid for the entire flow domain and the arbitrary movements of the body 
surrounded by the minor grid 

• Handling of the extreme condition of the wall-to-wall contact cases are done automatically, when the wall 
boundaries of the moving body just touch a fixed wall, blocking the flow passage 

2. OVERSUN PARALLEL LIBRARY 

The OverSun has overset grid and domain partitioning modules, which are coupled with each other via Message 
Passing Library (MPI).  Figure 1 shows flow of the OverSun information from combination of the major 
(background) and the minor (moving) grids of the overset system to the partitioning of the combined grid for 
parallel computing. 

2.1 OverSun Grid Module 

The overset grid module is capable of automatically cutting hole(s), efficiently searching donor cells, reducing 
computational time via one-cell overlapping.  Figures 2 and 3 show grids before and after hole cutting steps for 
external and internal flow problems, respectively (details are in [6]). 

Fig. 1: Flow of the Parallel OverSun information from combining of the minor and 
major grids (Grid 1 and Grid 2) to further partitioning of the combined grid for 

parallel computing.

GRID 1 GRID 2
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GRID 1 + GRID 2
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2.2 Domain Partitioning Module 

This module is responsible for partitioning the grid generated by the overset grid module for Single Program 
Multiple Data (SPMD) parallel solver(s).  The grid partitioning steps and features are as follows: 

• An initial partition is generated using the Metis [7] graph partitioning library.  The Metis converts the grid 
into a graph and then partitions it into desired number of partitions using graph partitioning 

• Each processor carries the second level of partitioning using the initial partition information.  The one 
element-overlapped interfaces are constructed in second partitioning phase  

• After these phases, the files contain necessary information such as partition coordinates, connectivity, 
boundary conditions, node and element interface information written by each processor 

• For transient problems with moving bodies, these are repeated for at each time step.  Hence the efficiency 
of the parallel algorithm developed becomes important 

Fig. 2: Background and minor grids before and after hole cutting operations – 
a typical external flow scenario.

Fig. 3: Background and minor grids before and after hole cutting operations – a 
typical internal flow scenario (note that the minor/moving grid intersects with the fixed 

wall boundaries). 
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The partitioned domain for parallel computing of the problem of the grid in Figure 3 is shown in Figure 4, where 
different partitions are indicated with different colors.  In this problem the moving part is a three-dimensional valve 
placed in a channel at the near-complete blocking stage. 

2.3 Coupling of OverSun with Flow Solvers 

The code coupling is a technique which allows the data exchange between two or more codes in a loosely coupled 
fashion.  The OverSun can be loosely coupled with the flow solvers via MPI.  A typical MPI application has a 
general communicator to allow application processors communicate with each other for data exchange.  When the 
OverSun is coupled with a flow solver, this communicator is divided into two communicators, one for the OverSun, 
the other for the flow solver.  This way the OverSun processors communicate with each other via OverSun’s 
communicator while the flow solver processors communicate with each other via the solver’s communicator.  When 
the data exchange is needed between the OverSun and the flow solver, the general communicator is used.  

The coupled OverSun and the flow solver work as follows: When OverSun generates the composite grid data such 
as grid coordinates, it sends the connectivity and interpolation data to the flow solver via the general communicator.  
The solver uses these data to solve the problem for the whole flow domain.  If the body movement exists while the 
solver working on the data, the OverSun generates a new set of data for the next time step. 

3. RESULT TO BE PRESENTED 

In the full paper, applications of the developed parallel overset code for solution of moving-body problems with 
different number of processors and flow conditions will be demonstrated.  Parallel efficiency of the system will be 
investigated. 
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1. Objective
The goal of this abstract is to evaluate the parallel performance of a newly developed compressible

flow solver, ADPDIS3D, by reporting on recently performed benchmark computations with the solver
on the new NASA supercomputer Pleiades. The essential feature of ADPDIS3D is that it combines
the capabilities of a hypersonic flow solver for complex geometries with the capabilities of a solver
for direct numerical simulation of turbulence.

2. Parallel flow solver and grid generator
ADPDIS3D is a time-accurate solver that is capable of solving a number of different equa-

tion sets for simulation of compressible fluid flow. The currently implemented models include the
Euler/Navier-Stokes equations of standard compressible gas dynamics, the equations of non-ideal
magnetohydrodynamics, and the equations of multi-species combustion with or without thermody-
namic non-equilibrium models. The code is designed for simulation of hypersonic turbulent flows,
including combustion, plasma, thermal and chemical non-equilibrium flows. ADPDIS3D approxi-
mates the flow equations by node centered finite difference discretizations on curvilinear grids. For
simulation in complex geometries, ADPDIS3D uses composite overset grids generated by the Ogen
[1] grid generator.

ADPDIS3D is based on low dissipative high-order accurate spatial methods that include limiting
and filtering with flow sensors [5, 2, 6]. The idea of the method is to advance in time with a highly
accurate base scheme, and to apply a nonlinear filter after each full time step to suppress Gibb’s os-
cillations at discontinuities and other unphysical phenomena caused by locally non-smooth solution
features. The filters consist of the dissipative portion of a high order shock-capturing method mul-
tiplied by a flow sensor, where the flow sensor switches on the dissipation only where needed. Any
shock-capturing scheme can be used for shock-capturing dissipation. The preferred flow sensors in
ADPDIS3D are based on a wavelet decomposition of the flow field.

The current version of ADPDIS3D contains central spatial base schemes of orders up to 14,
adaptive nonlinear filters obtained from dissipation of WENO schemes of orders up to nine, and linear
filters of orders up to 16. For the case of standard gas dynamics without shocks, entropy splitting of
the inviscid flux derivative [4] can be employed to minimize the amount of numerical dissipation. For
cross comparisons, a number of standard shock-capturing schemes are also implemented. ADPDIS3D
advances the solution in time by Runge-Kutta time stepping, where the order of accuracy can be one,
two, three, or four.

One extra complication for parallel computation with high order schemes is that the computational
stencils are very wide, which leads to a large number of additional ghost points at the boundaries be-
tween processor blocks. Furthermore, ADPDIS3D uses summation-by-parts boundary modification

1Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA. [sjogreen2,henshaw]@llnl.gov.
Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-ABS-411008.

2NASA Ames Research Center, Moffett Field, CA 94035, USA. [Helen.M.Yee,Mohammad.J.Djomehri,
Arthur.S.Lazanoff]@nasa.gov
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Figure 1: Flow phenomena encountered around an entry vehicle.

of the operators near the physical boundaries. When the number of processors increases, these bound-
ary operators can make up a significant part of the computational domain in some of the processors.
The load balancing algorithm used by ADPDIS3D takes these effects into account.

For parallel execution on overset grids, each component grid is evenly distributed on the total
number of processors available. This gives perfect load balancing, but the amount of communication
is larger than optimal. For the explicit time stepping used in ADPDIS3D, the communication cost
is still only a small fraction of the total computation time. The approach is most efficient when the
composite grid is made up of a few large component grids, because of low computation to commu-
nication ratio when component grids with very few grid points are distributed on a large number of
processors. See Section 4 below for examples of performance.

The overlapping grid generator Ogen (part of the Overture framework developed at LLNL) is
used to construct overlapping grids for ADPDIS3D. Given a set of structured curvilinear component
meshes that cover a computational domain and overlap where they meet each other, the overlapping
grid generation algorithm will determine how the grids should interpolate from one another. This
process involves the cutting of holes where portions of grids are removed where they lie outside the
computational domain. There are a number of important issues that must be addressed to make the
grid generation process general, robust and automatic. The algorithm used by Ogen has been recently
enhanced to run on distributed memory parallel computers. This speeds up the grid generation process
and also permits very large grids to be generated.

3. Example computations
Often, hypersonic turbulent flows around re-entry space vehicles and space physics involve mixed

steady strong shocks and turbulence with unsteady shocklets. Figure 1 illustrates a schematic of many
of the possible steady and unsteady flow types. While sixth-order or higher order shock-capturing
methods are appropriate for unsteady turbulence with shocklets, lower order shock-capturing methods
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Figure 2: Grid and Mach number color levels in logarithmic scale for an Apollo-like CEV, Mach 16.

Figure 3: Richtmyer-Meshkov instability in Air/SF6. Material interface before (left) and after (right)
reshock. Iso-surface at air mass fraction 1/2.

are more effective for strong steady or nearly steady shocks in terms of convergence. In order to
minimize the shortcomings of low order and high order shock-capturing schemes, ADPDIS3D allows
different order of accuracy on different component grids. The two- and three-dimensional test cases
reported in [3] illustrate that the overall error in high speed flow computations is reduced, even if
high order schemes are used on only some of the component grids. The two examples shown below,
in Figs. 2–3, demonstrate the unique capability of ADPDIS3D of both solving for flows in complex
geometries, and to perform direct numerical simulations of turbulence.

The Apollo-like crew exploration vehicle (CEV) in Fig. 2 is computed on a six component overset
grid system. Figure 2a shows a two-dimensional slice through the grids, and Fig. 2b shows computed
Mach number color levels on the same slice. The free stream Mach number is 16 in this computation.

Figure 3, shows turbulent mixing by a Richtmyer-Meshkov instability. The initial condition is a
tube with air to the left and SF6 to the right of an interface. The tube is closed at the right end. A shock
wave is sent in from the left. After passing through the air/SF6 interface the shock wave is reflected
at the end of the tube. The reflected shock passes through the interface and mixes the interface once
more. Figure 3 shows the interface, represented as the iso-surface of yair = 1/2, where yair is the
mass fraction of air in the mixture. The interface is given a small initial perturbation to trigger multi-
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Figure 4: Execution time with weak scaling for a single grid computation. 20 time steps. Fixed time
step (red) requires no global communication. Fixed CFL number (blue) computes the local time step
and takes global minimum to compute.

dimensional effects. The increased mixing of the reflected shock can be assessed from Fig. 3, where
the left subfigure shows the interface after the first shock interaction, and the right subfigure shows
the interface after the interaction with the reflected shock.

4. Parallel performance
Figure 4 shows the weak scaling on Pleiades (NASA Ames supercomputer with 48,000 CPUs) for

the Taylor-Green vortex problem in three space dimensions on a single block grid. The total execution
time for a small number of time steps is measured when the number of grid points per processor is
fixed at 216,000. The number of processors varies up to 15,625. The number of processors for the
data points in Fig. 4 is always a cube, p3, for integers p = 2, . . . , 25, which means that not only is the
number of points per processor constant, but also that the shape of data in each processor is always the
same (a cube). The work load at the boundaries of the domain are identical in each processor, because
the boundary conditions are periodic, Therefore, the number of arithmetic operations are exactly the
same in each processor. Any deviation from a perfectly constant execution time must be attributed
to differences in the network performance. It is not surprising that the performance is superior when
the number of processors is small, because, in that case, the processors are closer to each other, in the
same node, or in the same rack. Figure. 4 shows both the performance with fixed time step (red) and
with fixed CFL number (blue). When the time step is fixed, no global communication is necessary,
but when the CFL number is fixed, the size of the time step is computed before each time step. This
entails more arithmetic operations and a global communication step to transmit the maximum stable
time step to all processors. However, as shown by Fig. 4, the cost of the global communication, which
theoretically should increase logarithmically with the number of processors, is not significant, at least
up to 10,000 processors.

Figure 5 shows the strong scaling on Pleiades for the Apollo-like CEV geometry in Fig. 2, with
65 million grid points on six component grids. Figure 5 shows results with up to 1024 processors,
which corresponds to approximately 58,000 points per processor. The performance started to seri-
ously degrade, for larger number of processors. Figure 5a shows the execution time for 100 time
steps vs. number of processors, and Fig. 5b displays the corresponding efficiency. The efficiency is
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Figure 5: Strong scaling performance for an overset grid system of 60 million grid points. a) (left)
Execution time in seconds for 100 steps, logarithmic scale. b) (right) Efficiency (right) for the same
data.

normalized to be one at the first data point, which was obtained with 32 processors. Here the nontrivial
geometry, grids with cut out holes, and the global communication step required for the interpolation
between overset grids are difficulties that are not present in the previous weak scaling example.
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[5] H.C. Yee and B. Sjögreen, Development of Low Dissipative High Order Filter Schemes for Mul-
tiscale Navier-Stokes/MHD Systems, J. Comput. Phys., 225 (2007) 910–934.
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Abstract: In this paper we describe several improvements with respect to parallel efficiency and scalar

performance of unstructured CFD-Codes. The optimizations are generic in the sense that they are applicable

to any CFD-Code which works on unstructured grids. The code modifications were sucessively introduced

in the DLR TAU-Code and the results of the optimizations are demonstrated on two different aircraft

configurations. We give an outlook of further improvements with respect to upcoming multicore computing

architectures.

Keywords: unstructured CFD, distributed computing, performance optimization

1 INTRODUCTION

Computational Fluid Dynamics (CFD) is a key technology for the aircraft industry. Growing use of CFD

in the aircraft design and the aerodynamic loads process demands increased simulation capabilities and

simulation capacity. Thus, optimization of run time performance and parallel scalability is one important

aspect to be faced among others like algorithmic acceleration. This is especially true for the current multi-

core computer systems, because more and more parallel processes will be available for single simulations.

The challenge will be to keep and even increase the parallel efficiency for massive parallel simulations on

future many-core-computers.

This paper describes several improvements with respect to parallel efficiency and scalar performance of

an unstructured CFD-Code. The optimizations are generic such that any unstructured CFD-Code could

in principle benefit from the proposed optimizations. We have introduced the modifications in the DLR

TAU-Code and used two aerodynamic configurations to demonstrate the results.

1.1 The TAU-Code

The DLR TAU-Code is a Finite-volume Euler/Navier-Stokes solver working on unstructured hybrid grids.

The code is composed of independent modules: Grid partitioner, preprocessing, flow solver, grid adaptation

and other modules. The different modules of TAU, described in more detail in [4], can both be used as

stand-alone tools with corresponding file I/O or within a Python scripting framework which allows also

for inter-module communication without file-I/O, i.e. using common memory allocation. The Preprocessor

generated a dual grid stored in an edge based data structure and coarse dual grid levels using an agglomeration

technique in order to allow for multigrid acceleration. The flow solver is a three-dimensional finite volume

scheme for solving the unsteady Reynolds-Averaged Navier-Stokes equations.

2 PERFORMANCE ENHANCEMENT

We have optimized the entire simulation workflow. We will describe the changes for each element of this

workflow in the following sections.
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2.1 Grid Partitioning

The parallelization of the flow solver is based on a domain decomposition of the computational grid. The

standard grid partitioner used a recursive bisection algorithm to compute the desired number of grid domains.

However, with a growing number of domains, the recursive bisection algorithm shows its limitations with

respect to parallel efficiency (see figure 2 (b)). The main bottleneck of this algorithm is the way how the grid

domains are load balanced. Due to the recursive nature of the bisection algorithm, the partitions acquire

a growing inbalance for each sucessive split. Additionally the number of cut-edges and domain neighbours

has not been optimal. In order to overcome these limitations for large numbers of CPU-cores, we have used

the CHACO toolkit [2] to calculate the partitions. In doing so, we also have changed the calculation of the

computational load. In the old formulation only the number of connecting edges was used to model the

computational cost of a grid partition. The new formulation additionally takes into account the weighted

number of grid points.

2.2 Preprocessing

In order to achieve high scalar efficiency on cache-based architecures, we needed to block data in the caches.

To that end we have maximized both spatial and temporal data locality.

2.2.1 Decomposition

In a first step we have decomposed all MPI-Domains into several sub-domains (colors). The sub-domais are

equally sized with respect to the number of data points they contain.

The size of these sub-domains then is chosen such that all the data is blocked in the L2-cache. In order to

achieve a high temporal data locality, we have re-organized the solver algorithm in the following fashion:

Instead of computing e.g. all flux contributions sequentially over the entire MPI-domain,

1 a dd i n n e r i n v i s c i d c e n t r a l ( gr id , . . . ) ;

2 add i nn e r v i s c o u s f l u x e s ( gr id , . . . ) ;

3 t u r b d i f f u s i o n f l u x e s ( gr id , . . . ) ;

4 t u r b s o u r c e s imp l i c i t ( gr id , . . . ) ;

we instead loop over all sub-domains. Within each sub-domain we compute all flux contributions,

1 for ( c o l o r = gr id−>gedat−>f c o l o r ; c o l o r != NULL; c o l o r = co lo r−>succ ){
2 a dd i n n e r i n v i s c i d c e n t r a l ( gr id , f a c e s o f c o l o r , . . . ) ;

3 add i nn e r v i s c o u s f l u x e s ( gr id , f a c e s o f c o l o r , . . . ) ;

4 t u r b d i f f u s i o n f l u x e s ( gr id , f a c e s o f c o l o r , . . . ) ;

5 t u r b s o u r c e s e x p l i c i t ( gr id , f a c e s o f c o l o r , . . . ) ; }

where all loops run over the faces of the color. We use the following convention: A face belongs to a color if

the attached point with the lower point number belongs to the color.

2.2.2 Point Order

While a high temporal data locality already achieves a substantial speedup, we additionally have maximized

the spatial data locality. To that end we have renumbered the points along a space filling Hilbert Curve.

For an example we refer to figure 1 (a). For every domain the Hilbert Curve starts at the point which is

closest to the top left corner. We then continously seek a neighbour of the previous point such that this next

point has a maximum of faces connecting it to the points we already have renumbered. In case of several

neighbour points with an equal number of faces connected to previous points, we again chose the point which

is closest to the top left corner.

2.2.3 Face Order

We also have modified the sequence of faces, in which the solver computes e.g. the flux contributions. We

have found that a near optimal sequence can be achieved by firstly re-ordering the points and then sorting

the faces with respect to the attached point numbers.
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(a) sub-domain decomposition (b) DLR F6 2× 10
6
grid points (c) Highlift 13.6× 10

6
grid points

Figure 1: Grid decomposition (a) and aerodynamic configurations F6 (b) and highlift (c).

2.3 Solver

In the flow solver we extended the concept of sub-domains by additionally fusing point and face loops.

Instead of subsequently initializing the gradients over the entire sub-domain, computing all gradients and

then normalizing by dividing with the control volume

1 for ( pnt = 0 ; i < npo ints ; pnt++)

2 i n i t i a l i z e g r a d i e n t s ( pnt , . . . ) ;

3 for ( f a c e = 0 ; f a c e < n fac e s ; f a c e++)

4 compute gradients ( face , . . . ) ;

5 for ( pnt = 0 ; i < npo ints ; pnt++)

6 no rma l i z e g r ad i en t s ( pnt , . . . ) ;

we additionally have fused point and face loops.

1 for ( c o l o r = gr id−>gedat−>f c o l o r ; c o l o r != NULL; c o l o r = co lo r−>succ ) {
2 i n i t i a l i z e g r a d i e n t s ( p o i n t s o f c o l o r , . . . ) ;

3 compute gradients ( f a c e s o f c o l o r , . . . ) ;

4 no rma l i z e g r ad i en t s ( p o i n t s o f c o l o r , . . . ) ; }

With this method we were able to extend the concept of sub-domains over large parts of the solver. We

have used the resulting temporal and spatial data locality to introduce pre-computed values for a number of

variables. E.g. we take the calculation of a distance between two points

1 dx = xx [ p1 ] [ 0 ] − xx [ p0 ] [ 0 ] ;

2 dy = xx [ p1 ] [ 1 ] − xx [ p0 ] [ 1 ] ;

3 dz = xx [ p1 ] [ 2 ] − xx [ p0 ] [ 2 ] ;

4 r l d2 = 1 .0 / (dx ∗ dx + dy ∗ dy + dz ∗ dz )

and replace the computation of 1/(dx2 + dy2 + dz2) by

1 r l d2 = r d i s t [ f a c e ] ∗ r d i s t [ f a c e ] ;

with rdist = 1/
�

dx2 + dy2 + dz2 is determined in the initialization phase of the solver.

This replacement is only possible due to the performance gain from the high cache efficiency and the reduced

number of compute cycles, which compensates the additional load.

3 RESULTS

To demonstrate the achieved performance gain due to the optimization of the code we performed a RANS

calculation with two aerodynamic configurations. One is the well known DLR F6 configuration (figure 1

(b)) with 2× 106 grid points and 5× 106 volume elements already presented in [3] and the other is a highlift
configuration (figure 1 (c)) with 13.6×106 grid points and 35×106 volume elements. For both configurations
we used the explicit Runge-Kutta flow solver from the TAU-Code with the following settings (see also [1]):
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1 Turbulence model : Spa la r t Allmaras with Edwards mod i f i c a t i on

2 So lve r type : c e n t r a l scheme

3 Number o f Runge−Kutta s t ep s : 3

4 Mult ig r id : 4w cyc l e ( h i g h l i f t a l s o 3v and no mu l t i g r id )

5 Number o f i t e r a t i o n s : 50 (DLR F6 ) , 200 ( h i g h l i f t )

The DLR F6 configuration was used to show the evolution of the TAU-code performance due to the source

code optimizations over the last decade (see table 1).

Table 1: The improvement of the TAU-Code performance over the last years in MFlops
1.

2.4 GHz Opteron Single Core 2.6 GHz Opteron Dual Core

CPUs 2002 % Peak 2004 % Peak 2006 % Peak Optimized % Peak

4 2547 13.26 2969 15.46 3730 17.93 4278 20.56

64 33245 10.82 40781 13.27 41613 12.50 56327 16.92

128 48549 7.90 63720 10.31 62166 9.33 94987 14.26

Whereas the highlift configuration was used to demonstrate the efficiency gain and scaleability of the TAU-

Code when using large numbers of CPU-cores (see figure 2).

(a) No multigrid (b) 3v multigrid (c) 4w multigrid

Figure 2: Parallel performance of TAU-Code versions on [5] with the highlift configuration.

4 CONCLUSION AND OUTLOOK

We have increased scalar and parallel effciency of the unstructured CFD code TAU by a substantial margin.

All optimzations are generic in the sense that they are applicable to any CFD-Code which works on unstruc-

tured grids. We are currently investigating the possibility to achieve even higher speedups by eliminating

the indirect access by means of a L2 cache local workarray. The underlying reason is that the indirect access,

which is typical for all unstructured CFD solvers, prevents a SIMD vectorization of the code.
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Abstract

In this paper a parallel direct Poisson solver for DNS simulation of turbulent flows in domains of
revolution using unstructured meshes is presented. It is based on a Fourier diagonalization in the
azimuthal direction and a Schur complement based decomposition on the other two directions.
Numerical experiments carried out on IBM MareNostrum supercomputer to test the robustness
and efficiency of the algorithm are presented. This solver is being used for a DNS of a turbulent
flow around a sphere. The results of the initial case of study at Re = 3700 are presented.

Key words:
parallel direct Poisson solver, Direct Numerical Simulation (DNS), Schur complement, FFT,
unstructured meshes, domains of revolution, flow around sphere

1. Introduction

Direct Numerical Simulation (DNS) of turbulent flows are rarely used for ’real applications’.
The main reason is that the mesh size necessary to avoid subgrid scales is proportional to Re9/4,
and the time step scales with Re1/2. Altogether, this means that the computational complexity
scales with Re11/4. However, DNS are of high interest for the study of the physics of turbulent
flows because the numerical results are obtained without modelling any term of the Navier-Stokes
equations. Besides, DNS has become very important for the improvement and validation of new
turbulence models.

In the numerical algorithm used for DNS, the solution of a Poisson equation, which arises
from the incompressibility constraint and has to be solved at least once at each time step, is
usually the main bottleneck in terms of RAM memory and CPU time requirements. In this
context, efficient and scalable algorithms for the solution of the Poisson equation are of high
interest.

A parallel Schur-Fourier Decomposition algorithm, for the solution of the Poisson equa-
tion discretized in domains of revolution with extruded unstructured meshes, is proposed in the
present work. This method has been used before to carry out DNS for a differentially heated
cavity at high Rayleigh numbers using Cartesian grids [1]. The goal of the present work is to
extend it for revolved unstructured grids.

2. Mathematical and numerical method

The Navier-Stokes and continuity equations can be written as

Ω
∂u
∂t
+ C (u) u + Du + ΩGp = 0 (1)

Mu = 0 (2)
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where u ∈ R
m and p ∈ R

q are the velocity vector and pressure, respectively. The matrices C (u),
D ∈ R

m×m are the convective and diffusive operators, respectively. Note the u-dependence of the
convective operator (non-linear operator). Finally, G ∈ R

m×q represents the gradient operator,
and the matrix M ∈ R

q×m is the divergence operator.
For the discretization of the momentum equation (1), a second order backward difference

scheme for the time derivative term, a fully explicit second-order one-leg scheme [2] for the
convective and diffusive terms, and a first-order backward Euler scheme for the pressure gradient
are used.

Our spatial discretization schemes are conservative, i.e., they preserve the kinetic energy
equation, which allow good stability properties even at high Reynolds numbers and with coarse
meshes. These conservation properties are held if and only if the discrete convective operator is
skew-symmetric (Cc (us) = −Cc

∗ (uc)), if the negative conjugate transpose of the discrete gradi-
ent operator is exactly equal to the divergence operator (− (ΩcGc)∗ = Mc), and if the diffusive
operator Dc is symmetric and positive-definite.

To solve the velocity-pressure coupling, a classical fractional step projection method [2] is
used, up

c = un+1
c + Gc p̃c (3)

where the pseudo-pressure is p̃c = pn+1
c ∆t/ (β + 1/2), and up

c is the predicted velocity. The
discrete Poisson equation for p̃c is obtained by taking the divergence of (3) and after applying
the incompressibility condition, Lc p̃c = Mcup

c (4)

where discrete laplacian operator Lc ∈ R
q×q is, by construction, a symmetric positive-definite

matrix (Lc ≡ McΩ
−1M∗c). Once the solution is obtained, un+1

c results from the correction
un+1

c = up
c − Gc p̃c (5)

The origin of checkerboard problem is related with the unrealistic components of cell-centred
velocity field that projection matrix cannot eliminate. The most common way to tackle this prob-
lem is to slightly change some of the operators used in this projection step. Such modifications
are generally introducted in the divergence operator M as in the traditionally used Momentum
Weighted Interpolation Method [3]. Our approach is to change the equation (5) with a Least
Squares gradient reconstruction method. Doing so, the properties of the pressure gradient opera-
tor are slightly changed and the system is conditioned without any modification in the convective
operator.

2.1. Solving the Poisson equation
As a result of the discretization, the Poisson equation obtained is:

Lcx = b (6)

where Lc ∈ R
q×q is the Laplacian operator derived in previous section, and x, b ∈ R

q are the
solution and right-hand side term respectively. Taking into account the geometry of the domain,
the mesh is generated by revolving a 2D unstructured mesh with a constant step 2π/Nper. With
this grid, the linear dependences in the azimuthal direction are given by circulant matrices. This
allows to solve the Poisson equation by means of a Fourier diagonalization method. In the
spectral space (diagonalization space), the Laplacian operator has the form

L f req =

Nper�

k=1
L fk . (7)

Thus, it is decoupled in Nper two − dimensional systems:

L fk x fk = b fk k = 1, ...,N per; (8)
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reducing dramatically its arithmetical complexity and the RAM memory requirements to solve it.
Notice that the DFT necessary to transform the right-hand side term from physical to the spectral
space (b �→

�Nper
k=1 b fk ) and, after the system is solved, the solution backwards to physical space

(
�Nper

k=1 x fk → x), can be carried out by means of a FFT algorithm that has O(nlogn).
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Figure 1: Numerical experiments on MareNostrum supercomputer. a) Strong speedup of DSD method to solve two −
dimensional systems (8). b) Number of iterations of local Sparse Cholesky preconditioned CG with the time spent by
DSD.

The Nper two − dimensional systems (8) are solved by means of a Direct Schur complement
based Decomposition (DSD) method [4, 5]. This method is based on the explicit calculation of
the Schur complement matrix of the partitioned system L fk , and its direct solution. Although the
large RAM memory requirements and pre-processing time, on the solution step this methodology
can be very fast compared with iterative solvers. In this particular case, since the systems to be
solved are two − dimensional, the size of the Schur complement matrix grows linearly with the
mesh size. Meshes with the initial extruded plane of size up to 4 million nodes are considered in
this paper. On the other hand, the pre-processing is carried out only once because the matrix L is
constant during the time integration.

Different numerical experiments have been carried out on IBM MareNostrum supercomputer
to test the efficiency of the algorithm. In Fig. 1(a) the strong speedup of DSD solver with meshes
of sizes: 0.5, 1, 2 and 4 millions nodes is plotted. The main cause of the speedup limitation
of this method is the growth of the Schur Complement matrix with the number of CPU. Note
that when the size is increased the speedup improves because the percentage of time spent in the
solution of systems grows.

In Fig. 1(b), it is showed the iterations that can be performed with local Sparse Cholesky
preconditioned CG, with the time needed to solve the system using DSD. Note that the number
of iterations grows with the number of CPU, this is because the speedup of CG-Cholesky method
is better. However as the size of the diagonal blocks decreases with the number of CPU the
method needs more iterations to reach convergence. These results mean that given a mesh, a
group of CPU, and a required accuracy; if the number of iterations needed by the iterative solver
are higher than the value plotted, its more efficient to use the direct solver. In general, lower
frequencies of system (8) are easier to solve for the iterative solver. This is because its systems
are more diagonal dominant and the initial field, given by the solution in the previous time-step,
is more accurate. In [6] different strategies are used for the different 2D systems depending on
how well-conditioned they are.

Apart from the parallelization of Lfk x fk = b fk systems solved by P f req processors; the set of
frequencies is partitioned into Pspec subsets. Thus, the total number of processors used in the
solution is Ptotal = Pspec.P f req. In the absence of an efficient distributed memory FFT, data are
replicated and a sequential FFT algorithm is used. This makes necessary to perform an alltoall
communication before applying FFTs, and its the main limitation for the speedup produced by
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the frequency partition.
In Fig. 2, is showed the weak scalability in the the azimuthal direction. The problem consid-

ered is the Poisson equation discretized in different revolved unstructured grids. The sizes of the
revolved two − dimensional meshes are: 0.5, 1 and 2 million nodes respectively. For each point
on a line, the size of the discretization in the periodic direction (Nper) is twice than the previous
point. The value of Nper for the starting point of the lines is 16, thus for the next points is 32, 64
and 128 respectively. The load for CPU is kept constant, the number of CPU’s used in each point
are 80, 160, 320 and 640 respectively. The times are normalized by the value on the starting
point.
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Figure 2: Weak scalability in the the azimuthal direction.

3. DNS around a sphere at Re = 3700

Numerical simulations of the flow around a sphere are performed at Re = 3700, where
Reynolds number is defined in terms of the free-stream velocity U and the sphere diameter D.
Solutions are obtained on a computational domain of dimensions [-5D,20D]; [0,5D]; [0,2π],
where the sphere is located at x = 0, y = 0. The govering equations are solved on an unstructured
mesh generated from the extrusion around the axis of a two-dimensional unstructured grid in a
(x,y) plane.
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Figure 3: Illustrative results. a) Visualization of the vortical structures (top) and the contours of the instantaneous
azimuthal vorticity (bottom), both obtained with the finnest grid (2.7 MCV). b) Averaged Streamwise velocity at three
locations in the wake. Comparison of the results obtained (1.24 MCV mesh) with Kim and Durbin [7] and Yun et al. [8].
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The boundary conditions at the inflow consist of a uniform velocity (u,v,w)=(1,0,0). Constant
velocity (u,v,w)=(1,0,0) is also prescribed at the outlet boundaries except for the downstream one
where a pressure based condition is used. No-slip conditions on the sphere are imposed.

In order to evaluate the influence of the grid resolution, calculations are carried out using two
different grids . The coarse mesh is composed of 1.24 M (19351 x 64 planes) of control volumes,
while the finnest one has 2.7 M CV (42142 x 64 planes).

Some illustrative results obtained are depicted in Figure 3. Vorticity structures in the near
wake obtained with the finnest grid are plotted in Fig. 3(a). Furthermore, streamwise velocity at
different locations in the wake, in comparison with literature available results, is plotted in figure
3(b). As can be seen, results obtained with both meshes are very promising as they are able to
predict the mean flow quantities successfully.
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Abstract: We discuss possible ways to improve CFD application software performance by highlighting 
key features of the HPC clusters, including, multi-core processor performance, host channel adapters 
(HCA), multi-rail networks, and message passing (MPI) implementations and more as well as briefly 
highlight the ever-growing need for HPC for solving computing intensive MDO problems.
Keywords: HPC, CFD, MDO, clusters, multi-core, multi-rails, MPI, parallel scalability 

1.0 INTRODUCTION 

Parallel processing on high performance computing environments has enabled much larger and complex CFD 
problems to be addressed [1, 2]. It is noteworthy that while High Performance Computing (HPC) has indeed 
facilitated solutions to many of the complex CFD simulations and the growth in the usage of CFD, the application of 
most detailed approaches (such as, direct numerical simulations (DNS) of the Navier-Stokes equations) for industry 
standard vehicle configurations with typical operating conditions are still beyond today’s computing capability.    

It is well known that the cost of software development exceeds hardware upgrade costs in later years of the product 
life cycle. Besides, a “simplistic” usage of the newer generation hardware does not provide the expected or desired 
level of performance improvement and very often the engineer or scientist is unaware of the possible hardware 
options that can be employed to improve performance. This is simply due to the information gap between the 
engineering users, who are typically experts in their technical disciplines/applications, and the hardware specialists 
who are well versed in the hardware usage.  

In this paper we will discuss possible ways to improve the application software performance (i.e. CFD codes) by 
highlighting key features of the HPC clusters, including, multi-core processor performance, host channel adapters 
(HCA), multi-rail networks, message passing (MPI) implementations and such as well as the ever-growing need for 
HPC for solving computing intensive MDO problems with high fidelity analysis codes, such as CFD and Structures.    

2.0 PERFORMANCE OF CFD APPLICATIONS 

Majority of the CFD applications, with few exceptions, is implemented in a distributed memory paradigm and rely 
heavily on the use of explicit message passing technology (MPI). The driving force behind such an approach is the 
desire to reach global portability over all possible computer architectures. The way the cluster nodes are connected 
together has a significant influence on the overall application performance, i.e. the cluster interconnect is critical to 
the efficiency and scalability of the entire cluster, as it needs to handle the I/O requirements from each of the CPU 
cores without imposing networking overhead on the computational performance. In multi-core processor 
architectures, the performance and scalability bottlenecks have shifted to I/O and memory configurations. 

2.1 Performance on a single node

2.1.1 Multi-core processor performance: For a very long time, the primary source of performance improvement in 
new processors was expected from a higher clock rate but this feature did not fully address the performance 
expectations. Chip designers not only face physical layout problems in further increasing the clock rate but also 
other challenges including specific requirements of application codes such as those related to memory referencing. 
The latter includes memory latency, cache utilization and memory bandwidth. Application codes require well 
balanced processors – not only pure computational power but also mechanism by which the data is delivered. 
Classification of an application code/algorithm based on bandwidth requirements is well known with the two most 
popular categories being the bandwidth hungry and latency driven algorithms. The typical measure of a bandwidth 
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driven algorithm is the well known Triad benchmark while the second category will include any algorithm that relies 
on sparse data sets. However, this is not a very accurate classification and in reality all computational algorithms are 
bandwidth hungry. The difference is in the time pattern of memory requests- the first group shows a continuous 
stream of memory transfer while with the second category we have a discontinuous pattern where high bandwidth 
areas look like spikes on time axis. This means that practically all algorithms will benefit from processors with a 
higher memory bandwidth.  For multi-core processors, it becomes more complicated because we have to pay 
attention to the complete data path from memory to cache to computational units.  

The following example is using FLUENT CFD application code, from ANSYS Inc., based on unstructured grid 
discretization that in turn defines the sparse nature of the main data structures. This example is used to illustrate the 
multi-core processor performance with 2 Intel Clovertown sockets in a node. The Intel Clovertown processor is a 
quad core processor that consists of two dies, each of those dies contains 2 computational cores and one shared L2 
cache. We ran 4 threads computation on a single node that contains 2 Clovertown sockets using various threads to 
core allocation schemes and the results are provided below: 

Table 1: Threads to core allocation 

4 threads/socket; shared 
L2 cache; 1 FSB 

2 threads/socket; shared 
L2 cache, 2 FSB 

2 threads/socket; non 
shared L2 cache; 2 FSB 

Bandwidth (MB/sec) 550/1.0 504/1.09 426/1.29 
Time (sec) 46/1.0 39/1.18 31/1.48 

The FSB for this particular chipset ran at 1333 MHz so hardware bandwidth is about 10.6 GB/s. As seen, the 
average bandwidth consumed by the CFD application is much lower then available hardware bandwidth but 
nevertheless measured timings are quite different. Our interpretation is that using the optimal thread allocation with 
non-shared L2 cache results in a much lower number of memory requests and as such the memory consumption 
spike is much lower and that leads to a better application performance over all. 

The bandwidth related problem that are specific to the current generation of multi-core processors are extensively 
resolved with the new Intel quad-core processor, Nehalem. Nehalem is one of the new processors that provide for a 
better balance between computational units and the memory path characteristics.  
1. The Nehalem socket has a memory controller device directly on the die that allows doubling the available 

bandwidth. Depending on the memory type, the hardware bandwidth is in the range of 20GB/s - 35 GB/s;  
2. Each core has its own L1 and L2 cache to substantially decrease the number of stalls in a data path; 
3. The data pre-fetch algorithm for L2 and L3 caches has been reworked to achieve more effective data load. 
The above improvements have contributed to substantial improvement in application performance over the previous 
generation of processors. 
Following is a comparison of FLUENT standard benchmark suite performance on a node with 2 Harpertown quad-
core sockets/processors running at 3GHz and a second node with 2 Nehalem quad-core processors at 2.66GHz. The 
performance metrics used in this study is the same rating number used by ANSYS that represents the number of jobs 
completed in a 24-hour time frame. Hence, a higher number represents better performance. 

Table 2: Comparison of Intel Harpertown to Nehalem processors 

# of cores 
(threads) 

Aircraft (2M cells) 
Harpertown/Nehalem 

Eddy (417K) 
H/N

Sedan (4M) 
H/N

Turbo (500K) 
H/N

1 94/134 110/138 61/105 444/617 
2 183/266 218/268 122/213 866/1201 
4 275/493 389/499 185/397 1400/2223 
8 312/812 540/881 217/676 1835/3927 

As seen from the above results, Nehalem processor with a lower clock rate performs significantly better then 
Harpertown processor. It is noteworthy that performance for larger models is more sensitive to the memory path 
characteristics of a particular processor and even more significant is the improvement with more number of threads. 
Most interesting is the performance comparison for a fully populated node. With 8 threads, Harpertown processor 
certainly hits a road block in memory path limit however the Nehalem processor performance is unaffected.

2.2 Factors influencing parallel scalability 
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It is well known that interconnect parameters (e.g. latency and bandwidth) are critical to the efficiency and 
scalability of complex cluster systems. Interconnect is critical for handling all communications requirements, 
transferring information from node to node without imposing a heavy overhead. Several publications have 
demonstrated the needs for a superior interconnect. It has been demonstrated that the low-bandwidth and high-
latency characteristics of Gigabit Ethernet (GigE) make it a performance bottleneck, limiting the overall cluster 
efficiency and preventing any performance gain beyond four or five compute nodes. At the same time, an InfiniBand 
(IB) connected cluster has demonstrated higher performance (rating) than the GigE-based configuration [3]. 
Presently, Infiniband architecture provides for the most advanced interconnect for I/O and inter-process 
communications. High performance MPI implementations over Infiniband are also available. While a notable 
feature of Infiniband is its high bandwidth, the network bandwidth can still prove to be the performance bottleneck 
in some of today's most demanding applications. This is especially the case for clusters built with SMP nodes, in 
which multiple processes may run on a single node and must share a node bandwidth. 

2.2.1 Host Channel Adapters (HCAs): Two ways to overcome bandwidth limitations are the use of more 
sophisticated Host Channel Adapter (HCA) cards and multi-rail networks.  In this section, we highlight the 
importance of Host Channel Adapter (HCA) cards for servers and clusters with multi-core processors. A case study 
using FLUENT CFD code is performed on 2 pairs of node. The first pair of nodes is using IB HCA InfiniHost3 
while the second pair of nodes is with IB ConnectX. The round robin allocation scheme is used so if we run on 2 
cores then thread 0 is allocated on node 0, thread 1 is allocated on node 1. If we run with 4 threads, then threads 0 
and 2 are allocated on node 0 and threads 1 and 3 get allocated on node 1 and so on. We intentionally chose a very 
small case (32,000 cells) so cost of communications will be quite high. Following are the timings from running the 
solver for 100 steps: 

Table 3: Comparison of HCAs 
# of cores (threads) InfiniHost3 ConnectX Speedup 

2 9.605 8.214 1.17 

4 5.687 4.351 1.31 
8 3.368 2.560 1.32 
16 6.504 1.812 3.59 

It is obvious that IB ConnectX provides much better performance on a high number of threads. It is also noteworthy 
that it maybe much cheaper to upgrade only the HCA cards on a cluster then rewrite the code of interest. 

2.2.2 Multi-rail Network: Another interesting and useful feature of multi-core Infiniband clusters is the multi-rail 
network. Multi-rail networks can improve MPI (Message Passing) communication performance by distributing the 
communication traffic to multiple independent networks (rails). For multi-rail, the MPI library has to manage the 
network traffic between the available separate network fabrics. The primary intent of having multiple network on a 
system is to separate communication and IO activities. However, several applications have limited IO activity and 
their performance may be limited by communication costs; so the choice of multiple networks seems very attractive 
towards improving communication costs in such application codes. One good example is the CFD steady state 
solvers. The main task of a steady state CFD solver is to arrive at a converged solution in the shortest possible time. 
Intermediate results are not of much interest so one will not necessarily save those results. With steady state codes, 
the primary IO activity typically happens in the initial and final phases of simulation so the main part of simulation 
time does not involve much IO activity.

The FLUENT standard benchmark suite, using FLUENT v12.0.9, running on an Altix ICE cluster is used to 
understand multi-rail network contribution towards improving the application performance. The cluster 
configuration is a 256 node Altix ICE+ (8200EX) cluster with 3.0GHz/12M/1600MHz 120W quad-core/node 
(x5472 Harpertown/Seaburg chipset) and 2GB/core memory. And, the performance metric is the same rating 
number used by ANSYS that represents the number of jobs completed in a 24-hour time frame. Hence, a higher 
number represents better performance in Table 4.  

For smaller models, in general a single-rail network provides for sufficient bandwidth and there is little 
improvement in parallel scaling with dual-rail network. However, for larger cases, we see a significant difference 
between single-rail and dual-rail performance numbers beyond 512 cores. With a single-rail network, 
communication cost after 256 cores becomes expensive and we start to see negative scaling. At the same time dual-
rail network has enough bandwidth capacity to sustain a reasonable growth of parallel performance expansive. 
Indeed, it is worth using multi-rail features for large scale simulations and at high core counts. 
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Table 4: Single-rail/Dual-rail performance rating comparison 

nprocs Turbo (0.5M cells) Eddy (417K) Aircraft (2M) Sedan (4M) Truck (14M) Truck_poly (14M) 

16 3680/3790 1134/1130 590/630 440/440 69/70 70/70 

32 7513/7697 2160/2152 1209/1180 804/905 140/139 138/135 

64 13880/14281 3516/3473 1691/2066 1788/1784 281/281 253/268 

128 14706/14460 4867/4916 2551/4414 3435/3442 556/540 440/500 

256 18885/19750 6484/6496 4179/5647 5477/5494 1009/1019 869/853 

512 4028/6912 1837/2171 4661/7464 1006/1546 858/1842 

1024 901/1353 692/862 803/2796 772/2374 

2.2.3 Large Model Parallel Scalability: A large truck model of 111M cells of mixed type is used to understand the 
benefits of multi-rail network and appropriate tuning of the hardware features. The problem involves external flow 
over the truck body and uses DES model with the segregated implicit solver. The results that are presented below 
are using FLUENT Version 12.0.9 on Altix ICE 8200EX (3GHz, quad-core) can also be seen at the ANSYS 
benchmark website at: http://www.fluent.com/software/fluent/fl6bench/fl6bench_6.4.x/problems/truck_111m.htm

Table 5: External flow over a truck, FLUENT v12.0.9, Altix ICE 8200EX scaling 

CPUs of Cores Machines or 
Blocks 

Rating (higher number 
is better) 

128 16 60
256 32 124.1 
512 64 244 
1024 128 464.3 
2048 256 741 

3.0 CONSIDERATIONS FOR FUTURE WORK 

 For parallel scalability a major contributing factor therefore is the performance of a particular MPI implementation 
on any particular computer architecture. A common belief is that the major part of parallel performance is defined 
by the quality of point-to-point communications. In general it is a valid statement but translating it to the network 
requirements can be non trivial. A simple way to state this is as follows: For a one level algorithm where all 
computations are done on one computational grid, the size of inter domain messages is defined by a size of domain 
faces and because it is typically quite large it is dependent on the network bandwidth. On the other hand for multi-
level solvers (e.g. multi-grid algorithms) a large part of the communications is performed with small size messages 
and therefore depends mostly on network latency. However, such requirements will depend also on the problem 
size, number of nodes and other parameters. 

In order to get an understanding of the communication scenario, performance instruments are wrapped around MPI 
calls that report the time spent in a specific communication primitive at runtime. Below is an example of MPI 
session timing taken from a CFD run on 32 cores (8 nodes): 

MPI_Allreduce 53.1 sec; MPI_Waitall 13.2 sec; MPI_Send 7.2 sec; MPI_Recv 8.3 sec; MPI_Barrier 5.2 sec 
MPI Time 112.3; Wall Time 374.4 
Clearly, a large part of time is spent in the collective operator MPI_Allreduce. However, when we instrument the 
same example with a tool (MPIinside) that uses an explicit synchronization call just before MPI_Allreduce we 
observe the following: MPIinside statistics: b_Allred 53.3446 sec;  Allred: 5.6589 sec 

Here b_allred is the time to synchronize and allred is the time spent by the collective operator itself. As we can see 
the actual cost of collective operations is lower then point-to-point communication primitives but the implicit 
synchronization time which is required for completion of collective operations is an expensive part of the overall 
communication cost. This application has almost ideal load balance measured by number of cells per parallel 
domain so the computation time scales well and according to Amdahl’s law the overall scaling should also be good. 
However, we can see that a code will wait in certain specific points for implicit synchronization which we will refer 
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to as micro-imbalance. The reasons for this imbalance can be several including that the actual amount of compute 
work is defined not only by number of computational cells but also through the variations of the physical models,  
variations of computational domains like internal and boundary domains, fluctuations in HCA loads, etc...The 
elimination of micro-imbalance can be a major factor in the future improvement of parallel scalability. One 
approach that can be utilized is the new MPI protocol (MPI-2) that introduces a new class of communication 
primitives called one-sided communications, example of such primitives being PUT and GET. Such an approach 
relies on large shared memory windows and minimal amount of direct copy operations which in turn leads to much 
better MPI performance. Using one-sided communications, one can observe the increase in bandwidth and even 
more impressive is the decrease in latency by a factor of about 3X. Another wonderful feature of one-sided 
communications is the asynchronous nature of communication algorithms based on those primitives.  

The above performance enhancements in single discipline CFD codes allow engineers not only to perform more 
sophisticated and realistic fluid dynamic analyses but also permit the use of high fidelity CFD codes as an integral 
part of more complex design processes like Multidiscipline Analysis and Optimization (MDO) [4]. For example, a 
basic aircraft design does not require much computational power, however, in order to be more precise and model a 
more refined shape, 100’s of design variables will be required to represent the variation in the shape of the airfoil at 
many stations along the wing as well as details of the internal structure. Clearly, this would call for a high fidelity 
CFD analysis of the air flow, corresponding to each change in design with the MDO process. The need for HPC is 
therefore ubiquitous for several reasons including: faster turn around times of solutions to complex design problems; 
dealing with ever-growing model sizes and more complete models such as in rotor-stator interactions in a turbine; 
handling more complex physics such as in combustors and Large Eddy Simulations; and, enabling formal MDO 
solutions in a timely manner to impact product design cycle times. 

Key HPC requirements to systematically and rigorously investigate a large design space for MDO include: 
• Balanced HPC environments to support multidiscipline analysis: The heterogeneous mix of simulations 

common to a MDO process tends to exhibit a range of HPC resource demands. For instance, the implicit 
structural analysis solvers for dynamic responses requires high rates of memory and IO bandwidth with 
processor speed as a secondary concern while explicit dynamics solvers for impact crash simulation benefits 
from a combination of fast processors for the required element force calculations and a high rate of memory 
bandwidth necessary for efficient contact resolution. CFD also requires a balance of memory bandwidth and 
fast processors, but benefits most from parallel scalability. 

• High throughput efficiency: Most vehicle systems are multidisciplinary involving a heterogeneous mix of 
analysis codes, including high fidelity analyses codes; High throughput efficiency on a multiprocessor system 
allows for fast turnaround times of multiple jobs, enabling many runs to be made concurrently in a short amount 
of time as required in the construction of the approximation (surrogate) models for MDO [5]. 

For today’s economics, these HPC resources such as CPU cycles, memory, system bandwidth and scalability, 
storage, file and data management – must deliver the highest levels of engineering productivity and HPC reliability 
that is possible from a platform environment. 

4.0 SUMMARY 

Parallel processing on high performance computing clusters is enabling much larger and more complex CFD 
problems. However, in order to realize these performance gains, a knowledgeable use of the latest generation of 
HPC clusters with multi-core processors, multi-rail networks, MPI and such developments is critical. This paper 
details possible ways to improve CFD code performance on HPC clusters and the standard benchmark suite of the 
industry standard CFD code, FLUENT, is used in illustrating the performance improvements. Further, this paper 
addresses the ubiquitous need for HPC with high fidelity, multidisciplinary analysis and optimization.  
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Abstract: A CFD driven robust and accurate method for constrained aerodynamic design 
previously developed by the authors, is extended to  complex aircraft junctions such as wing-
body-fairing.In this method, the total drag is minimized at fixed lift subject to numerous 
geometrical and aerodynamical constraints. The method  is driven by Genetic Algorithms and 
full Navier-Stokes computations supported by massive multilevel parallelization  . The method 
is illustrated by example of the optimization of wing-body-fairing for generic business jet 
configuration at realistic transonic cruise flight conditions. The results indicate the applicability 
of the method to practical aerodynamic design. 
Keywords: Aerodynamic design, drag reduction, efficient parallelization strategy 
____________________________________________________________________________ 

1. INTRODUCTION 

It is generally expected in aircraft industry that automatic or even semi-automatic optimizers may essentially shorten 
the process of aerodynamic design, especially at the preliminary design stage, which may cost above 100 million 
USD. Alongside the reduction in the design costs, accurate optimizers may  improve the quality of design making 
the project more competitive.

The authors' opinion is that the following reasons may contribute to the insufficient use of 3D CFD driven 
optimization tools for automatic aerodynamic design. Firstly, most of these methods employ incomplete gas-
dynamic models. E.g. the use of inviscid Euler equations as a CFD driver, limits the accuracy of optimization where 
viscous effects are significant. Secondly, wide-spread gradient-based optimization methods are confined to the 
search of local extrema which inevitably   affects the globality of optimization. The third, and probably most 
fundamental drawback of the existing methods is that they are able of handling only a very limited (if any) number 
of constraints, while the industrial optimization requires a significant (about 20-30) number of aerodynamic and 
geometrical constraints placed upon an optimal shape.

With the purpose to overcome these difficulties, in this paper an accurate, robust and computationally efficient 
approach to the constrained optimization of essentially 3D non-linear surfaces typical of complex aircraft junctions 
such as wing-body-fairing is presented.It  is based on the complete aerodynamic model (Navier-Stokes 
computations), expands the globality of optimum search (by employing mixed deterministic/probabilistic Genetic 
Algorithms), and handles simultaneously a large number of constraints. The present algorithm essentially extends
the capabilities of the optimization tool OPTIMAS (previously developed by the authors [1-3] to a significantly 
higher level of geometrical complexity of optimised aerodynamic configurations.

In industry, the success of the method should be assessed through practical optimization of realistic aerodynamic 
configurations. In this paper, we illustrate the capabilities of the method by applying it to the optimization of  wing-
body-fairing for a generic business jet configuration at realistic transonic cruise flight conditions.The results indicate 
the applicability of the method to practical aerodynamic design in engineering environment. It was shown that the 
optimization of wing-body-junction can considerably improve the aerodynamic performance of the aircraft in 
comparison to the previous design where only wing surface of the generic business jet was subject to optimization.
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2. OPTIMIZATION ALGORITHM 

As a basic search algorithm, a variant of the floating-point GA [4] is used.The mating pool is formed through the use 
of tournament selection.This allows for an essential increase in the diversity of the parents. We employ the 
arithmetical crossovercand the non-uniform real-coded mutationcdefined by Michalewicz [4]. To avoid  a premature 
convergence of GA we applied the mutation operator in a   distance-dependent form. To improve the convergence of 
the algorithm we also  use the elitism principle.

The constraints handling in the framework of GAs search was based on the following approach [5]. Contrary to the 
traditional approach, we employ search paths which pass through both feasible  and infeasible points. To implement 
this we extend the search space to the infeasible region using the important property of GAs: contrary to classical 
optimization methods, GAs are not confined to only smooth extensions.

It is assumed that the geometry of the aircraft configuration is described in the absolute Cartesian coordinate system 
(x,y,z), where the axes x,y and z are directed along the streamwise, normal to wing surface and span directions, 
respectively. In the developed approach, the whole surface of a wing body configuration is divided into three parts. 
The first part contains  the points of the aircraft fuselage ``inboard of the fairing ''. This part of the configuration is not 
subject to modification.

The second part contains the points of the exposed wing ``outboard of the fairing''. This part of the configuration is 
represented by a linear interpolation of 2D cuts (wing sections). For each wing section, the non-dimensional shape  
of the  airfoil (scaled by the corresponding chord) is defined in a local  Cartesian coordinate system. For 
approximation of the upper and lower airfoil surface, Bezier curve of order N (one-dimensional Bezier Spline) 
representation was used.

Finally, the third (highly non-linear) part of the configuration is the fairing. This essentially 3D part is described 
through combination of Bezier surfaces representation  (two-parameter families of Bezier Splines of order N and M)
and local twist distribution (one-parameter Bezier Spline of order N).

Finally, the dimensions ND of the search space are equal to: ND=(2N-2)(M-1). In practice, we used N=10, M=4
making ND=54.

One of the main weaknesses of GAs lies in their low computational efficiency. That means that special efforts 
should be made in order to significantly improve the computational efficiency of the algorithm. This was 
accomplished through the application of the following two approaches.

In the framework of the first approach,  we use Reduced-Order Models theory in the form of Local Approximation 
Method (LAM). The idea is to approximate the cost function using information from the specially constructed  local 
data base.The data base is obtained by solving the full Navier-Stokes equations in a discrete neighbourhood of a 
basic point positioned in the search space. Specifically a mixed linear-quadratic approximation is employed. One-
dimensionally, the one-sided linear approximation is used in the case of monotonic behaviour of the approximated 
function, and the quadratic approximation is used otherwise.

Besides, in order to enhance the global character of the search, we perform iterations  in such a way that in each 
iteration, the result of optimization serves as the initial point for the next iteration step (further referred to as 
optimization step).

In the framework of the second approach we use an embedded multilevel parallelization strategy [6] which includes 
Level 1 - Parallelization of  full Navier-Stokes solver; Level 2 - Parallel CFD scanning of the search space; Level 3 - 
Parallelization of the GAs optimization process; Level 4 - Parallel optimal search on multiple search domains.

Finally we can conclude that the multilevel parallelization approach allowed us to sustain a  high level of parallel 
efficiency on massively parallel machines, and thus to dramatically improve the computational efficiency of the 
optimization algorithm.

3.  ANALYSIS OF RESULTS 

The method was applied to the problem of a single point multiconstrained  optimization of the wing-body junction 
surface for a generic business jet aircraft at transonic flight conditions. In total 4 test cases were considered. The 
corresponding optimal shapes are designated by Case_GBJFR_1 to Case_GBJFR_4.
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For the subsequent discussion we will consider the following three initial geometries of the generic business jet: the 
original geometry and two geometries with already optimized exposed wing, which were presented in [3] and 
labelled in this paper as Case_GBJ_2 (no constraint on CM) and Case_GBJ_5 (with constraint on pitching moment).

The test case Case_GBJFR_1 deals with fairing optimization (with frozen exposed wing) without constraint on 
pitching moment and without beam constraints. The initial geometry for this optimization came from  Case_GBJ_2.
The next test case (Case_GBJFR_2) deals with wing optimization with the frozen  wing-body fairing resulted from 
the Case_GBJFR_1 optimization.

The last two test cases Case_GBJFR_3 and Case_GBJFR_4 correspond to optimization with constraint on CM and
with beam constraints, which were kept to the original level. For Case_GBJFR_3 (fairing optimization with frozen 
optimal wing) the initial geometry was Case_GBJ_5, while for Case_GBJFR_4 (exposed wing optimization with 
frozen optimal fairing) the initial geometry was the optimal shape of Case_GBJFR_3. 

For the original configuration, the combination of flight conditions at the main cruise design point(a high free-
stream Mach number M=0.80 and a moderate transonic lift coefficient CL=0.40) leads to the development of a 
lambda-like spanwise shock development. At these conditions the drag value for the original configuration is equal 
to CD=292.0 aerodynamic counts.

The previously performed in [3] unconstrained one-point wing optimization with the frozen fairing shape
(Case_GBJ_2) allowed to achieve 16.7 counts of drag reduction and decrease the total drag down to 275.3 counts. 
More detailed analysis shows  that this significant drag reduction may be attributed to a significant decrease in the 
shock strength in the exposed wing region. Nevertheless, the shock intensity at the wing-body-junction region was 
not practically diminish.

The optimization of the wing-body-fairing shape (Case_GBJFR_1) improved the pressure distribution in the fillet 
region. As a result, this improvement permits to reduce the total drag of the optimized configuration by an additional 
10.7 counts (compare to Case_GBJ_2) and to achieve the level CD=264.6 counts.

The second test case Case_GBJFR_2, starting from Case_GBJFR_1  as an initial geometry, deals with the 
optimization of the exposed wing keeping the fairing shape frozen. The optimization Case_GBJFR_2 further 
improved the aerodynamic performance of the aircraft configuration: the total drag value is equal to 258.7 drag 
counts (5.9 counts less than that of  the initial geometry Case_GBJFR_1).

Off-design behaviour of the optimized configurations may be studied through lift/drag polars. It can be concluded 
that the local gains described above are preserved in a wide range of lift coefficient values from CL=0.15 to above 
CL=0.6. Additionally we should note that the drag reduction due to optimisation increased for Mach numbers higher 
than the design  value. Specifically, at M=0.82 and CL=0.40 the drag reduction of Case_GBJFR_2 with respect to 
the original business jet configuration, is equal to 42 counts.

Alongside the unconstrained (with respect to CM and local thickness) optimisations, the optimizations with beam 
constraints and with the constraint on pitching moment, were performed. In Case_GBJFR_3 and  Case_GBJFR_4,
the value the corresponding constraints were kept to the original level.

For Case_GBJFR_3 the initial geometry was the optimal shape  of the one-point constrained drag minimization of 
the exposed wing with fixed fuselage and fillet shapes (labeled as Case_GBJ_5 in [3]). The total drag value for 
Case_GBJ_5 configuration was equal to 276.1 counts, while the fairing optimization reached the level of 269.2 drag 
counts (in total about 7 counts drag reduction).

Let us now consider the  results achieved in the last test case Case_GBJFR_4. Starting from the Case_GBJFR_3
aircraft shape as an initial geometry, this constrained optimization deals with the modification of the exposed wing
keeping the wing-body fillet shape frozen.

The corresponding drag reduction was equal to 10.1 counts. It is important to note that the achieved drag level
(CD=259.1 c, CM=-0.136) is only a little bit higher in comparison with Case_GBJFR_2 (CD=258.7 c, CM=-0.149). 
This means that, in the framework of the successive optimisations of the exposed wing and of the fillet region, the 
penalty due to the imposition of the pitching moment constraint and beam constraints is negligibly small (about 0.4 
counts). Moreover, at a  higher Mach number M=0.82, the drag reduction for  Case_GBJFR_4 compared to the 
original aircraft configuration was equal to 42.7 counts (from the original 321 counts down to 278.8 counts), while  
the total drag value for  Case_GBJFR_2 was equal to 280.8 aerodynamic counts.
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Finally, let us present  data which  illustrate the off-design behaviour of the optimal geometry of Case_GBJFR_4:
lift/drag polars at M=0.80 and M=0.82 and Mach drag rise curves at the design CL=0.4. As a whole the analysis  
shows that the considered optimisation is not restricted to a single design point  and that the gain due to  
optimization is observed in a wide region of lift values and free-stream Mach numbers. For example, the 
optimization succeeded in shifting  the Mach drag divergence point to  at least the main Mach design value.
Specifically, based on the definition of the Mach drag divergence point, the corresponding MDD value for the 
original configuration is equal to 0.795, while for Case_GBJFR_2 and Case_GBJFR_4 MDD =0.815. Additionally, 
the subsonic drag level  of the optimized configuration is also decreased  (apparently due to reduction in the value of 
form drag). 
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Abstract: Three families of axis-symmetric fairing shapes are studied in subsonic through 

supersonic flow conditions to assess drag performance over the ascent trajectory of the Saturn 

V launch vehicle. To quantify and compare the drag performance of the various fairing shapes, 

a quantity known as the ’drag loss’ is introduced. Solving the adjoint equations, or dual 

problem, enables the calculation of error bounds and the creation of intelligently focused mesh 

refinement for a highly efficient parallel solver. The results reported in this paper were 

computed with Cart3D on the Columbia supercomputer located at NASA Ames Research 

Center.  

Keywords: adjoint, fairing, shape optimization 

 

1. INTRODUCTION 

During the Apollo program of the 1960’s and 1970’s, NASA’s Saturn V launch vehicle successfully launched many 

orbital and lunar missions. This paper describes the application of Cart3D, a highly parallel inviscid CFD tool with 

adjoint-based mesh refinement and shape optimization capabilities, applied to the Saturn V rocket for the purpose of 

predicting pressure drag on the fairing. Because boundary layer growth is negligible over the relatively short length 

of the fairing, and skin friction effects will be minimal, the inviscid assumption will still provide accurate 

comparisons of drag performance.  Parallel computations with an adaptive-meshing Eulerian flow solver provide 

fast, efficient, and accurate predictions of drag on a rocket fairing.  

The application of advanced CFD tools such as Cart3D to the design and analysis of complicated geometry has 

become increasingly affordable, and rapid and accurate prediction of aerodynamic forces is now possible. For 

example in this study, subsonic and transonic flow simulations of the Saturn V geometry are completed in less than 

one hour using 24 processors on Columbia, and less than 30 minutes for supersonic cases. The parallel capability of 

the code enables the creation of large databases of flow solutions with reasonable turnaround time.  This ability to 

analyze many shapes throughout an ascent trajectory makes parallel CFD an important tool in the design process.  

This paper begins with an introduction to the Cart3D flow-solver package. In particular, a discussion of the new 

adjoint-based adaptive meshing capabilities and shape optimization, as described in Nemec and Aftosmis [3] and 

[4]. Next, a review of the original Saturn V launch vehicle is presented, along with a description of the parameters 

and processes considered in this study. Simulation results for the various fairing shapes are then presented with an 

analysis of the drag loss.  

With the impending retirement of the Space Shuttle, NASA has renewed interest in traditional rocket designs for its 

next generation launch vehicles. This academic study of the Saturn V is also applicable to the design and analysis of 

NASA’s next generation launch vehicles, but is not published here. 

1.1 Study Description 

The objective of the fairing design study is to identify a shape with the least drag over the Saturn V’s Stage I ascent 

trajectory. A subset of points from the ascent trajectory [5] is chosen and steady-state runs at each of these points are 
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computed. The Mach numbers included in this study range from 0.6 to 5.0. Three families of fairing shapes are 

examined, comprising: conical with round tip, Sears-Haack (2 shapes), and power-law (3 shapes), seen in Figure 1 

mounted on a simplified Saturn V geometry. The dimensions of the original Apollo command module define the 

total length L = 113.34 inches, measured from the tip to the cylindrical stack, and maximum radius R = 77.00 

inches.  

 

Figure 1: Shapes included in study (a) Baseline, (b) Sears-Haack C=0.00, (c) Sears-Haack C=0.33, (d) Power-Law 

N=0.4, (e) Power-Law N=0.5, (f) Power-Law N=0.6 

1.2 Flow Solver Description 

The inviscid flow-solver Cart3D, see Aftosmis et al. [1], is used to quickly and efficiently solve a test matrix of 

geometric configurations and flight conditions using an adaptively refined Cartesian cut-cell approach. This cut-cell 

approach decouples the volume grid from the surface representation, allowing adaptive grid generation without the 

need to regenerate the surface mesh (and project back to CAD). The solution is marched in time to steady-state 

convergence using a five-stage Runge-Kutta scheme with local time stepping, and a multigrid W-cycle to improve 

solution convergence. Domain decomposition allows parallel processors to quickly solve any given problem with 

nearly linear speed-up. 

1.3 Adjoint Adaptive Meshing 

In order to accurately predict the aerodynamic functionals of interest, an adjoint-based adaptive mesh refinement 

scheme is implemented in Cart3D, see Nemec and Aftosmis [4]. This method uses the solution of the adjoint 

equations to produce a local error estimate for each cell, a criteria which is used to identify cells for further 

refinement. The result is a reduction in the local error contribution of the cells in error prone-regions, and an overall 

improved estimate for the functional of interest. This procedure generates an efficient mesh for computing the 

functional by refining only necessary cells and minimizing computational time.  

Central to the proper use of the methodology is the concept of the functional (J (Q)). The functional is a scalar 

quantity that depends on the flow solution, such as the drag or lift of an aerodynamic body. A discrete mesh can only 

support a functional approximation of limited-accuracy, but better accuracy can be obtained by ‘embedding’ the 

mesh with universal refinement. The error between these functional approximations is determined by the following 

procedure, which is then used to identify flow regions for mesh refinement.  

First, the functional error |J(Qh)−J(QH)|, on the initial mesh must be approximated, where the subscript Qh designates 

an embedded mesh solution and QH refers to the initial coarse mesh. Using a Taylor series for the approximation of 

the functional and residual on the fine mesh, we can calculate the error in the functional on the coarse mesh  
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from the tip to the cylindrical stack, and maximum radius R = 77.00 inches.

(a) (b) (c) (d) (e) (f)

Figure 1: Shapes included in study: (a) Baseline, (b) Sears-Haack C=0.00, (c) Sears-Haack C=0.33, (d)
Power-law N=0.4, (e) Power-law N=0.5, (f) Power-law N=0.6

Flow Solver Description The inviscid flow-solver Cart3D, see Aftosmis et al. [1], is used to quickly
and efficiently solve a test matrix of geometric configurations and flight conditions using an adaptively
refined Cartesian cut-cell approach. This cut-cell approach decouples the volume grid from the surface
representation, allowing adaptive grid generation without the need to regenerate the surface mesh (and
project back to CAD). The solution is marched in time to steady-state convergence using a five-stage Runge-
Kutta scheme with local time-stepping, and a multigrid W-cycle to improve solution convergence. Domain
decomposition allows parallel processors to quickly solve any given problem with nearly linear speed-up.

Adjoint Adaptive Meshing In order to accurately predict the aerodynamic functionals of interest, an
adjoint-based adaptive mesh refinement scheme is implemented in Cart3D, see Nemec and Aftosmis [4].
This method uses the solution of the adjoint equations to produce a local error estimate for each cell, a
criteria which is used to identify cells for further refinement. The result is a reduction in the local error
contribution of the cells in error prone-regions, and an overall improved estimate for the functional of interest.
This procedure generates an efficient mesh for computing the functional by refining only necessary cells and
minimizing computational time.

Central to the proper use of the methodology is the concept of the functional (J(Q)). The functional is a
scalar quantity which depends on the flow solution, such as the drag or lift of an aerodynamic body. A discrete
mesh can only support a functional approximation of limited-accuracy, but better accuracy can be obtained
by ‘embedding’ the mesh with universal refinement. The error between these functional approximations is
determined by the following procedure, which is then used to identify flow regions for mesh refinement.

First, the functional error |J(Qh)−J(QH)|, on the initial mesh must be approximated, where the subscript
Qh designates an embedded mesh solution and H refers to the initial coarse mesh. Using a Taylor series
for the approximation of the functional and residual on the fine mesh, we can calculate the error in the
functional on the coarse mesh

Functional Error = |J(Qh) − J(QH)| ≈ |ψT
h R(Qh)| (1)

where ψh is the solution to the adjoint equation

[
∂R(Qh)

∂Qh

]T

ψh =
∂J(Qh)

∂Qh

T

. (2)

This linear system of equations is related to the discrete flow equations through a duality principle, see Giles
and Pierce [2].

Finally, with knowledge of the local error contributions of each cell, a new mesh is created with better
refinement in error-prone regions. The cells with error above a certain user defined tolerance are refined,
while the cells which are below the tolerance are maintained at their previous resolution level. This process

      (1) 

where ψh is the solution to the adjoint equation 
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Flow Solver Description The inviscid flow-solver Cart3D, see Aftosmis et al. [1], is used to quickly
and efficiently solve a test matrix of geometric configurations and flight conditions using an adaptively
refined Cartesian cut-cell approach. This cut-cell approach decouples the volume grid from the surface
representation, allowing adaptive grid generation without the need to regenerate the surface mesh (and
project back to CAD). The solution is marched in time to steady-state convergence using a five-stage Runge-
Kutta scheme with local time-stepping, and a multigrid W-cycle to improve solution convergence. Domain
decomposition allows parallel processors to quickly solve any given problem with nearly linear speed-up.

Adjoint Adaptive Meshing In order to accurately predict the aerodynamic functionals of interest, an
adjoint-based adaptive mesh refinement scheme is implemented in Cart3D, see Nemec and Aftosmis [4].
This method uses the solution of the adjoint equations to produce a local error estimate for each cell, a
criteria which is used to identify cells for further refinement. The result is a reduction in the local error
contribution of the cells in error prone-regions, and an overall improved estimate for the functional of interest.
This procedure generates an efficient mesh for computing the functional by refining only necessary cells and
minimizing computational time.

Central to the proper use of the methodology is the concept of the functional (J(Q)). The functional is a
scalar quantity which depends on the flow solution, such as the drag or lift of an aerodynamic body. A discrete
mesh can only support a functional approximation of limited-accuracy, but better accuracy can be obtained
by ‘embedding’ the mesh with universal refinement. The error between these functional approximations is
determined by the following procedure, which is then used to identify flow regions for mesh refinement.

First, the functional error |J(Qh)−J(QH)|, on the initial mesh must be approximated, where the subscript
Qh designates an embedded mesh solution and H refers to the initial coarse mesh. Using a Taylor series
for the approximation of the functional and residual on the fine mesh, we can calculate the error in the
functional on the coarse mesh

Functional Error = |J(Qh) − J(QH)| ≈ |ψT
h R(Qh)| (1)

where ψh is the solution to the adjoint equation

[
∂R(Qh)

∂Qh

]T

ψh =
∂J(Qh)

∂Qh

T

. (2)

This linear system of equations is related to the discrete flow equations through a duality principle, see Giles
and Pierce [2].

Finally, with knowledge of the local error contributions of each cell, a new mesh is created with better
refinement in error-prone regions. The cells with error above a certain user defined tolerance are refined,
while the cells which are below the tolerance are maintained at their previous resolution level. This process

.      (2) 

The linear system of equations defined by (2) is related to the discrete flow equations through a duality principle, see 

Giles and Pierce [2]. With knowledge of the local error contributions of each cell, a new mesh is created with better 

refinement in error-prone regions. The cells with error above a certain user-defined tolerance are refined, while the 

cells that are below the tolerance are maintained at their previous resolution level. This process is repeated until a 

user-defined ‘global error tolerance’ is achieved or the maximum number of adaptation levels has been generated.  
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Figure 2 shows slices of the mesh at successive refinements during the solution process for the baseline shape in 

supersonic flow. For this study, refinement is limited to the regions affecting drag on the fairing (the functional). 

Mesh points cluster at the shock and near the body where the highest errors exist, while regions downstream of the 

fairing are ignored. This localized refinement demonstrates the effectiveness of the adjoint method, as only the 

influential regions are refined. The same parameters are specified for the geometries in the shape study, and similar 

high-quality meshes are obtained. 

 

Figure 2: Mesh adaptation on baseline Saturn V shape, Mach 1.70 

2. RESULTS 

A brief verification of the adaptive meshing scheme is presented here. For the baseline shape at Mach 1.7, Figure 3 

shows the drag coefficient as a function of the mesh size. Initially the 22,000-cell mesh under-predicts CD by 7% in 

comparison to the final 3,800,000-cell mesh. The corrected functional is also shown, which is calculated from the 

correction term in the adjoint equation. On a given mesh, the corrected functional is an estimate of the functional 

value on a universally refined embedded mesh, corresponding to the next-level of mesh adaptation. Both values 

converge towards the asymptote where CD ≈ 0.805.  

Progressive improvements to the functional accuracy are observed in Figure 4, where the functional error is plotted 

against mesh size. From the first adapted mesh of approximately 27,000 cells, the log of error falls linearly with the 

log of the number of cells. This behavior is extrapolated to the final mesh where error is approximately 0.003, or < 

0.5%. The adjoint solution is not computed on the final mesh because no further mesh refinement is performed, 

however, it could be computed to confirm the maximum error and to provide an even better estimate of the 

functional.  

Final results of the fairing study indicate a preference for blunt shapes, due to their superior performance in the 

transonic flight regime. Figure 5 shows a comparison of the drag coefficients for the power-law and Sears-Haack 

families of shapes across the entire ascent trajectory. Fairings are qualitatively compared based on a weighted 

integral of the drag over flight time (drag loss). A full discussion of the results and explanations of the adjoint-based 

mesh adaptation and shape optimization are presented in the full paper. Parallel computations are shown to be an 

integral component of modern aerodynamic shape analysis and design. 



350

21st International Conference on Parallel Computational Fluid Dynamics
 

 

 

 

Figure 3: Drag coefficient convergence for baseline shape at Mach 1.70 
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Figure 4: Global error reduction, baseline shape at Mach 1.70 

 

 

Figure 5: Drag coefficient of fairing shapes over launch trajectory 
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Abstract: An integrated Multi-disciplinary Design Optimization (MDO) technique for the 
development of planetary atmospheric entry vehicle concepts accounting for shape, trajectory, 
thermal protection system (TPS), and vehicle closure is described. This MDO technique aims 
to provide a practical approach to exploring new vehicle concepts to meet the increased 
demand of future space exploration mission requirements. This has been accomplished using a 
combination of engineering and higher-fidelity physics analysis tools along with optimization 
methods and engineering judgment. This integrated MDO process allows engineers to 
efficiently and consistently analyze multiple design architectures. The MDO environment is 
created using the ModelCenter software developed by Phoenix Integration. The framework 
described is referred to as COBRA, a rough acronym for "Co-Optimization of Bluntbody Re-
entry Analysis". The COBRA framework utilizes parallel computing capabilities in two forms. 
One form is the use of parallel discipline codes, such as the aerothermodynamics analysis 
tools. Secondly, multiple design cases can be run simultaneously through the MDO 
framework. This parallelization approach allows the evaluation of complicated integrated 
systems with the proper level of physics within a reasonable turnaround time to impact and 
influence early design decisions. 
Keywords: Multi-disciplinary, Re-entry, Planetary, Trajectory, Thermal, Protection 

1. INTRODUCTION 

In this paper we describe an integrated Multi-disciplinary Design Optimization (MDO) technique for the 
development of planetary atmospheric entry vehicle concepts accounting for shape, trajectory, thermal protection 
system (TPS), and vehicle closure. The framework described is referred to as COBRA, a rough acronym for "Co-
Optimization of Bluntbody Re-entry Analysis". The paper will include details of the framework, the wrapped 
engineering and high-fidelity physics based analysis codes, the set of parameters being optimized, and the system 
constraints that have significant impact on the design of future atmospheric entry vehicles. We also describe 
preliminary results of such a design. 

2. DISCIPLINARY ANALYSIS TOOLSET 

2.1 Geometry 

The vehicle geometry is based on one of several FORTRAN codes written specifically to provide an analytic 
description of the vehicle shape with a small number of geometric parameters. Examples shapes are shown in Fig 1.  

Cobra   ACVe [Ref. 1]   Apollo/CEV 
Figure 1: Example shapes 
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These codes enable the use of a small set of geometric parameters that define the vehicle’s outer mode line (OML) 
geometry as part of the MDO algorithmic process providing shapes with a range of aero/aerothermodynamic 
properties useful for optimization. The general parametric shapes of the COBRA process entirely defines the vehicle 
shape without the need for intense human interaction, allowing for automated optimization of a large design space to 
find the best combination of aerodynamic stability and aeroheating for the vehicle performance. 

2.2 Aerodynamics/Aerothermodynamics 

The aerodynamic and aerothermodynamic characteristics of each particular vehicle shape is generated by either the 
CBAERO engineering code [2] and or DPLR [3] CFD code. CBAERO is an engineering analysis code based on 
independent panel methods, such as modified Newtonian, along with a surface streamline algorithm, and an 
extensive set of validated engineering correlations to establish surface pressure, convective and radiative heating, 
shear stress, and boundary layer properties. DPLR is a high-fidelity physics-based real-gas Navier-Stokes code used 
to give results either in support of or in place of CBAERO.  

It is in this discipline where a hybrid approach is used which leverages high fidelity analyses with engineering 
methods using sophisticated interpolation techniques known as “anchoring”. The anchoring approach aims to 
address the deficiency in the engineering and high fidelity methods, providing a rapid and intelligent engineering-
based interpolation method. Further detail of this anchoring approach can be found in Reference [4]. 

2.3 Trajectory 

During optimization of the vehicle, the nominal design trajectory must be considered to be dependent on the 
aerodynamic and aeroheating properties of the particular vehicle shape, in particular that of L/D, Ballistic 
Coefficient and peak heating. Constraints on the trajectory flight dynamics also must be imposed. To find the 
nominal trajectory for each vehicle under consideration, the POST2 [5] trajectory code is used. 

2.4 Structures 

Estimates of the impact of the vehicle shape on its structural weight are being planned through the use of 
NASTRAN [6]. This will allow us an understanding of how a shape that might be favorable for aerodynamics and 
TPS weight may prove to be unfavorable for structural efficiency. This will open up an additional useful trade space.

2.5 Thermal Protection System (TPS) Sizing 

To assess the thermal protection system for the vehicle shape generated, the nominal trajectory for each such shape, 
and its aerodynamic and aeroheating characteristics, including the time history of the heating environments, are 
provided to the TPSSizer [7] set of programs, which includes the FIAT [8] thermal analysis code for ablative TPS 
materials. The result is a sizing of the TPS for a vehicle shape undergoing its own nominal trajectory for the mission 
constraints being considered. 

2.7 Vehicle Sizing 

Another constraint in the MDO algorithm is the launch vehicle.  Specifically, its payload fairing and delivered 
vehicle total mass at entry interface for the atmospheric planet of interest. Together with the TPS mass obtained 
from TPSSIZER and the propellant mass estimate from the trajectory tool POST2, the weight/sizing closure analysis 
code, XWAT/XClosure [9] provides an estimate of the delivered payload for the particular vehicle shape parameters 
selected by the MDO algorithm. Optimization of this delivered payload is then the objective function being 
maximized by the COBRA MDO algorithm.  

An overview of the COBRA process described above is shown in Figure 2. The MDO driver will then find a Pareto 
front amongst the allowed range of all of the vehicle shape parameters being considered, which then can be further 
explored. Typically, a global optimization process with sparse population using engineering fidelity analysis at a 
single trajectory point is used to explore the initial vehicle design space. This is followed by a full vehicle design 
including trajectory and TPS sizing optimization and finally weights and sizing to perform the final vehicle closure. 
A less densely populated design space is generated next using high-fidelity analyses anchored to engineering 
analyses. It is at this point in the optimization process where the use of parallel computing becomes extremely 
necessary to further explore the design space in a reasonable turnaround time. 
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Figure 2: Co-Optimization Bluntbody Re-entry Analysis Process 

3. RESULTS 

In order to test and validate the integrated MDO process, the Mars Pathfinder (MPF) entry probe vehicle was used. 
MPF is chosen since it was instrumented to transmit trajectory and thermal couple (TC) data during its entry [10]. 
The Pathfinder vehicle was an axi-symmetric 70.2 deg. half-angle blunted cone with a rounded shoulder and a 
truncated 46.6 deg. conical back shell. Based on the Pathfinder vehicle geometry specifications, a pre-existing 
surface mesh is uploaded into the COBRA framework using an option for user provided mesh. With this, the 
COBRA framework is run to provide the aero-thermodynamic database (ADB) from the CBAERO engineering tool 
execution which provides both the aerodynamics for the trajectory analysis performed by the POST2 trajectory 
analysis tool, and the aerothermodynamics data for the thermal protection system sizing, performed by the 
TPSSizing tool. Results of this process are shown in Figures 3-4. 
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Figure 3 shows good agreement between the predicted drag coefficients and trajectories as compared to previously 
published data [10-12].  Figure 4a shows the Pathfinder peak heating along the centerline of the vehicle and good 
agreement with high fidelity CFD from previously published data [10]. Finally, Fig.4b shows a comparison of the 
thermal couple temperature data near the nose of the vehicle and good agreement with the flight data is seen. These 
comparisons provide confidence that the individual disciplinary analysis tools integrated within the MDO 
framework predict reasonable results for the design of atmospheric entry vehicles. 

Next, the results of utilizing the COBRA MDO process for a hypothetical mission to land the maximum payload 
possible on the surface of Mars utilizing the Delta IV launch vehicle, is described. Based on an excess launch 
energy, C3, value of 10 km^2/s^2 which is an appropriate value for achieving a Mars mission, the estimated transfer 
mass from Earth to Mars entry interface is estimated to be approximately 8800 kg. This number was taken from the 
Delta IV planner’s guide [13]. Accounting for the vehicle adapter mass (~425kg) and cruise stage mass (~630kg) a 
useful arrival mass of 7745kg at Mars entry interface is estimated. To be conservative, an entry vehicle total mass of 
7,500 kg was selected. The above mission parameters define our MDO global objective of maximizing the payload 
mass placed on the planet surface of Mars and provide us with a constraint on what the outer mode line shape of our 
entry vehicle can be based on the launch vehicle shroud for the Delta IV vehicle. The parametric shape code has pre-
coded the various launch vehicle shrouds so as to provide an interference check to prevent violating this constraint.

In order to explore the shape parameter space within the MDO framework, the ModelCenter Genetic Algorithm 
optimizer, Darwin, is used. The constraints for this optimization are “number of triangles which violate the launch 
faring”=0, and “Cmα”<0. The launch fairing triangle constraints ensures the shapes do not violate the launch 
fairing. The Cmα constraint is an aerodynamic constraint to ensure that the vehicles being explored are statically 
stable in the pitch plane. The objectives are to minimize the convective heating on the vehicle (qdot_convection) and 
maximize the drag area (CDa) which correlates directly to how quickly the vehicle will slow down before reaching 
the supersonic parachute deployment constraint [14] where higher CDa is desirable. The results of this optimization 
are plotted in Fig. 5a. Note that the “+” symbols denote the “Pareto front.” Any point on the plot in Fig. 5a is a 
potential solution and the Pareto front are the solutions which best meet the multiple objectives. For our purposes the 
point denoted in Fig. 5 with the red arrow was chosen as the vehicle shape to explore further. This shape and its 
hypersonic pressure distribution are shown in Fig. 5b.  

Figure 5 (a) GA shape optimization results qdot convection vs. CdA and (b) Shape chosen.  

After seeing the optimized shape, it was realized that the aft of the vehicle was tapered and may not be directionally 
stable for the center of gravity (C.G.) location selected. The C.G. location is selected by restricting its placement 
along the centerline (y=0, z=0) of the vehicle and its x-axis placement is determined so as to trim the vehicle to fly 
at an angle-of-attack that achieves a desired lift-to-drag (L/D) ratio. A quick analysis was done which verified that 
the optimized shape was not directionally stable for the C.G. location chosen. Due to the flexibility of the shape 
code, the aft portion of the vehicle shape was modified to avoid the taper and still maintain the overall nose and 
lower surface shape. The result was a directionally stable vehicle with very similar aero/aerothermal performance. It 
should be noted that the optimization did not have a constraint to check for directional stability. This was added in 
and is now a constraint for future optimizations.  

Next, the aeroheating was looked at. It was decided that the small rounded corners on the nose may be problematic 
and a variation on the parameters which control the corner radius, PowN and PowX, were varied to explore nose 
shapes that showed lower heating without penalizing the aerodynamic performance.  The outcome of this is what we 
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call engineering alternative five (EA5) which showed lower total heating (Qdot) with similar shape parameters and 
aero performance to the original optimized shape.  Finally, the EA5 shape was used to complete the MDO design 
analysis by generating a full aerothermodynamic database with CBAERO that is used as input into the POST 
trajectory optimization tool. The POST trajectory for this vehicle is optimized to minimize heat load while meeting 
the supersonic parachute deployment window constraint and the g-load constraints.  With this trajectory the thermal 
protection system is optimized with the TPSSizer tool and the results are shown in the table below.  

Concepts Area [m^2] *TPS_Wt. [kg] TPS_UWT [kg/m2] 

COBRA-EA5 175.2  451.6  2.58  

In the final paper we will further demonstrate this capability. Also, in the final paper, the weights and sizing analysis 
tools will be integrated to provide a prediction for the final payload mass capability. 

4. CONCLUSIONS 

A Multi-disciplinary Design Optimization process has been developed for planetary atmospheric entry vehicle 
concepts accounting for shape, trajectory, thermal protection system (TPS) and vehicle closure in order to 
simultaneously satisfy desirable hypersonic aerothermodynamic, supersonic aerodynamic, and TPS characteristics. 
This has been accomplished using a combination of engineering and higher-fidelity physics analysis tools along with 
optimization methods and engineering judgment.  Due to the increased computation intensive aspect of using higher 
fidelity physics based codes, the parallelization of individual tools and the entire MDO process has proven to be 
necessary in providing efficient turnaround of multiple entry vehicle designs. 
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Abstract: A high-order moment approach is employed to model gas flow in a driven cavity 
under nonequilibrium conditions. To apply the moment method to low speed flow, the higher 
moments are decomposed into components representing their gradient (hydrodynamic) and 
nongradient (nonhydrodynamic) parts. As a result, the moment equations can be expressed in a 
convection-diffusion form and traditional CFD techniques for low speed flow can be used. The 
moment equations have been implemented in our in-house parallel CFD code, THOR. The 
validity of the moment method for nonequilibrium gas flow in the transition regime is assessed 
and the parallel performance of the code is measured on different computer platforms. 
Keywords: nonequilibrium flow, driven cavity, moment method, Knudsen number 

 

1. INTRODUCTION 

Gases in a low density environment or a microsystem will exhibit nonequilibrium phenomena because the number 
of molecular collisions is not sufficiently large for the gas to reach an equilibrium state. The extent of the 
nonequilibrium can be measured by the Knudsen number, Kn , which is the ratio of the molecular mean free path to 
the characteristic length of interest. A nonequilibrium gas can readily be described by kinetic theory and the 
Boltzmann equation [1] or simulated by the direct simulation Monte Carlo (DSMC) method [2]. However, the 
numerical solution of the Boltzmann equation for practical applications remains formidable due to the complicated 
structure of the collision term and its high dimensionality. It is also computationally expensive to use DSMC in the 
regime not far away from the equilibrium state, i.e. 1Kn < , particularly for low speed flows. On the other hand, the 
conventional macroscopic description, given by the Navier-Stokes-Fourier (NSF) equations, is no longer able to 
provide an accurate description of gas flow in the early transition regime (i.e. 0.1 1.0Kn≤ ≤ ). Alternative 
macroscopic modeling and simulation strategies [3-6] have been developed for many years but in this work, the 
Grad moment method [7], which was developed originally as an approximate solution procedure to the Boltzmann 
equation, is adopted to model driven cavity flow in the early transition regime. 

In Grad’s method of moments, a set of moments of the molecular distribution function is defined to describe the 
state of the gas. For a local equilibrium gas, the state of the gas can be determined by the first five lowest moments, 
density ,ρ  temperature T , and velocity .iu  As the gas departs from the local equilibrium state, additional moments 
are required. Grad was one of the pioneers to introduce the stress, ,ijσ  and heat flux, ,iq  as extended macroscopic 
variables and derived the governing equations for them from the Boltzmann equation. This results in the well-known 
Grad 13 moment equations. Recently, Grad’s 13 moment equations have been regularized [8, 9] to overcome some 
of their limitations, such as sub-shock structure [10]. With a set of newly derived wall boundary conditions [11, 12], 
the regularized 13 moment equations (R13) have been applied to confined microsystem problems. The Knudsen 
layer is an important feature in micro-scale gas flow. In the moment method, the Knudsen layer appears as 
superpositions of exponential layers [13]. The R13 equations are the smallest moment system which describes the 
gradient and nongradient transport modes in the transition regime and provide only one such layer contribution. To 
improve the accuracy of the moment method, a regularized 26 moment system [14, 15] has been derived by the 
authors. The R26 equations accurately capture the nonequilibrium phenomena predicted by kinetic theory, such as 
the Knudsen layer velocity, Knudsen minimum [16], nongradient heat flux, and bimodal temperature profile [17, 18] 
in the one dimensional planar Couette and Poiseuille flow for Knudsen numbers up to unity. 
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Fig 1   Configuration of driven cavity flow

2. EXTENDED HYDRODYNAMIC MODEL- THE REGULARIZED 26 MOMENT EQUATIONS  

Combining Grad’s moment method [7] and the regularization procedure [8], a system of 26 moment equations for 
monatomic gas flow has been developed by the authors [14, 15]. In addition to conservation laws and the governing 
equations for the stress, ,ijσ  and heat flux term, ,iq  the governing equations for the higher moments ,ijkm ijR and 
∆ are included in the 26 moment system to account for nonequilibrium effects. The set of moment equations will be 
listed in the full paper and a detailed derivation of these equations can be found in [15]. 
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3. NUMERICAL METHOD AND PARALLELISATION 

The original Grad’s moment equations are a set of first-order partial differential equations with hyperbolic 
characteristics and the regularized moment equations are a mixed system of first and second order partial differential 
equations. Traditionally, these equations are used to study hyperbolic flows [10, 19]. In the case of low speed gas 
flow, the flow is parabolic or elliptic. Using a hyperbolic flow solver to solve elliptic flows is inefficient and 
expensive. To overcome this issue, the moments are decomposed into their gradient (hydrodynamic) and 
nongradient (non-hydrodynamic) transport parts [11, 14, 15] defined by: 

,   = + ,   = + ,  +   and  =G G G G G
ij ij ij i i i ijk ijk ijk ij ij ijg q q h m m R Rσ σ ρ ρ ρω ργ ρχ= + = ∆ ∆ +  (1) 

where ,  ,  ,  ij i ijk ijg hρ ρ ρω ργ  and ρχ are the nongradient components for ,  ,  ,  ij i ijk ijq m Rσ and ,∆ respectively and 

,  ,  ,  and G G G G G
ij i ijk ijq m Rσ ∆  are the gradient components. This decomposition, which was originally proposed to study 

the R13 equations [11], is nonlocal and symmetric. As a result, the moment equations can be expressed in 
convection-diffusion form. 

+  
transition convection diffusion source

l

l ll

u
x xx St

µρρ
Φ Φ

 ∂ ∂Φ∂ Φ∂ Φ  ∂ Γ ∂∂  ∂ − =   (2) 

in which ( , , , , , , )i ij i ijk iju T g h ω γ χΦ = , 1 1(1, 2 5,3 2 ,5 6, ,7 9 ,3 7)C YΦΓ =  and ( , , ,  , , ,
i ij ij i ijku T g hS S S S S S Sγ ωΦ =

)Sχ  corresponds to the source terms of the respective governing equations. These equations form a set of second 
order partial differential equation. The mathematical characteristics of the system will be determined by the flow 
conditions. They are of a hyperbolic nature for high speed flows and parabolic or elliptic when the flow velocity is 
low or the flow is re-circulating. In this way, traditional CFD techniques for low speed flows can be used. In the 
present study, the finite volume approach has been employed. The diffusion and source terms are discretized by a 
central difference scheme. For the convective terms, a range of upwind schemes are available. The SIMPLE 
algorithm is adopted to resolve the coupling of the velocity and pressure fields. A collocated grid arrangement is 
used and any non-physical pressure oscillations are eliminated by the interpolation scheme of Rhie and Chow. The 
26 moment equations are implemented in the in-house code THOR, which is fully parallelized with MPI and grid 
partitioning methods. 
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4. RESULTS AND DISCUSSIONS 

In the present study, driven cavity flow in the transition regime is computed with the different moment systems to 
assess their validity in a 2D geometry. The configuration of the square driven cavity is shown in Fig. 1. The size of 
the square cavity is L  and the lid velocity is .wu  The rest of the walls are stationary. The Knudsen number is 

defined by ( ) 2Kn pL RTµ π= , where µ is the viscosity, p is the pressure and T is the temperature. To be 
consistent with the conditions studied by kinetic theory [20], the Reynolds number and Mach number is very small. 
The computed velocity profiles from the NSF equations with first and second order slip-boundary conditions, the 
R13 and R26 moment equations are presented in Fig. 2 in comparison with the results from the BGK kinetic 
equation [20] at 0.886.Kn =  In general, the NSF equations with both first and second order slip-boundary 
conditions are unable to give qualitatively correct velocity profiles in both directions. As expected, the R26 
equations predict the velocity profiles more accurately than the R13. 
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The performance of the code is measured on two different parallel platforms, HAPU and HECToR. HAPU is a local 
HP Cluster Platform 4000 based on Redhat Enterprise Linux 5. It has 128 x 2.4GHz AMD Opteron cores, with 2Gb 
memory per core and a Voltaire InfiniBand interconnect. HECToR is the UK's front-line national supercomputing 
service. The HECToR Phase 1 configuration is an integrated system known as “Rainier”, which includes a scalar 
MPP XT4 system, a vector system known as “BlackWidow”, and storage systems. The Cray XT4 scalar 
supercomputer comprises 1416 compute blades, each of which has 4 dual-core processor sockets. This amounts to a 
total of 11,328 cores, each of which acts as a single CPU. The processor is an AMD 2.8 GHz Opteron. Each dual-
core socket shares 6 GB of memory, giving a total of 33.2 TB in all. Each dual-core socket controls a Cray SeaStar2 
chip router. This has 6 links which are used to implement a 3D-torus of processors.  The point-to-point bandwidth is 
2.17 GB/s, and the minimum bi-section bandwidth is 4.1 TB/s. The latency between two nodes is around 6 s.  

A grid size of 1024x1024 is used to study the code’s parallel performance. The speedup of the code running 
different models is shown in Fig. 3. Although THOR is scaling linearly for all three models on both HAPU and 
HECToR up to 64 processors, the speedup of the code on HECToR is only two-thirds of that on HAPU. Possible 
reasons for the differences observed with HECToR are the faster CPUs and any dual-core network contention. 
Another reason for the superlinear behaviour on HAPU could be due to cache effects, which do not occur on 
HECToR. 

Shown in Fig. 4 is the normalized CPU time for the higher moment systems. To solve the 13 moment equations, it 
requires more than twice the CPU time of the NSF equations. The CPU time required for solving the 26 moment 
equations is doubled again over the 13 moment equations and is more than four times the CPU time for the NSF 
equations. As the number of processors increases, these ratios do not change. 
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Abstract: This paper deals with the numerical simulation of the climate of the XX century by 

means of the regional climate model COSMO-CLM. The area considered is the Alpine space 

that, with its complex orography, needs to be described with a non-hydrostatic model at high 

resolution. Numerical tests are performed on the NEC SX-9 supercomputer; particular 

attention is given to the study of the precipitations. 

Keywords: Regional Climate Modeling,  Atmospheric processes 

 

1. INTRODUCTION 

The usage of a Regional Climate Model (RCM) with an horizontal resolution of around 10 km for an area like the 

Alpine Space, with its complex orography, can be a useful tool for the description of the precipitation patterns 

expected in the next century especially in small-size (10-100 km
2
) Alpine river catchments, which are characterized 

by short response times, sometimes less than 6 hours, to intense extreme precipitation events (the basin response 

time is the time necessary for the water to flow through the drainage system); this means that there is very brief time 

between the precipitation event and the possible flood that follows. The knowledge of very precise expected trends 

for the precipitation patterns can help the decision makers to prepare mitigation and adaptation strategies; in fact 

intense rains are the causes of floods, but also of some particular landslides typology (as mudflow). The high 

attention of the scientific and social community for these applications is due to the expected increasing of natural 

hazards for effect of climate changes. In order to assess the climatic changes on this area we therefore need 

information at the smallest possible spatial scales. The global climate model used in this application, ECHAM4 [1],  

is characterized by a resolution of about 100 km, which is too coarse for impact studies on this area, where these 

phenomena have a characteristic space scale of hundreds of meters. The regional climate model COSMO-CLM [2] 

can be used for simulations on time range up to a century, with a spatial resolution between 1 and 50 km; at such 

resolutions, terrain height is better described (Figure 1) with respect to the global model, where there is in over-

/underestimation of valley/mountain heights resulting in errors for precipitation estimation, which is closely related 

to terrain height. It is well known that climate codes require high computational resources in terms of memory and 

CPU time and therefore the use of a multiprocessor machine is mandatory. In this work, the regional climatic system 

COSMO-CLM has been employed: it is a non-hydrostatic model for the simulation of atmospheric processes. It has 

been developed by the DWD–Germany and by the COSMO consortium for weather forecast services [3]. 

Successively, the model has been updated by the CLM-Community, in order to develop also climatic applications.  

The non-hydrostatic modelling allows providing a good description of the convective phenomena, which are 

generated by vertical movement (through transport and turbulent mixing) of the properties of the fluid as energy 

(heat), water vapour and momentum. 
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Fig.  1: CLM orography using a horizontal resolution of 7 km. In the red box the Alpine space is contained. 

 

Convection can redistribute significant amounts of moisture, heat and mass on small temporal and spatial scales. 

Furthermore convection can cause severe precipitation events (as thunderstorm or cluster of thunderstorm). Being a 

subgrid scale phenomenon, the convection usually has to be parameterised. In the CLM code, different convection 

scheme are implemented as Tiedtke scheme [4], which is also used in the reference version, and the Kain-Fritsch 

scheme [3]. The choice of this parameterization is essential in order to simulate the convective phenomena as the 

strong convective summer precipitation; these last ones, in fact, may cause flash floods because the heavy rain 

falling on bare soil and rocks runs off much faster than in winter, when the vegetation is present. Results obtained 

using these 2 different scheme will be shown. The mathematical formulation of COSMO-CLM is made up of the 

Navier-Stokes equations for a compressible flow. The atmosphere is treated as a multicomponent fluid (made up of 

dry air, water vapour, liquid and solid water) for which the perfect gas equation holds, and subject to the gravity and 

to the Coriolis forces. The model includes several other “parameterizations”, in order to keep into account, at least in 

a statistical manner, several phenomena that take place on unresolved scales, but that have significant effects on the 

meteorological interest scales (for example, interaction with the orography). Further parameterizations are available 

in order to describe some important physical phenomena for the atmospheric evolution, for example solar radiation, 

precipitations, soil behaviour and microphysics.  

The governing equations can be written as follows [5]: 

tvgp
dt
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⋅∇−×Ω−+−∇= )(2
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In which v


is the velocity vector, ρ is the density, p is the pressure, g is the gravity acceleration, Ω  is the constant 

angular velocity of earth rotation, t


is the stress tensor due to viscosity, cv and cp are the specific heat of moist air, 

respectively at constant volume and constant pressure. Qh and Qm are respectively the heat production per unit 

volume of air and the impact of changes in the concentrations of the humidity constituents on the pressure tendency. 
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Moreover, T is the temperature, q
x
 are the mass fractions of the constituents of the mixture (i.e. x = d, v, l, f 

respectively for dry air, water vapour, liquid water and frozen water), Jx and Ix are respectively the source/sink and  

the diffusion flux of the constituent x and Rd  is the gas constant for dry air. The moisture term α is defined as 
flv

dv qqqRR −−−= )1/(α , where Rv is the gas constant for water vapour. 

COSMO-CLM considers limited domains, so it is not possible to impose physical boundary conditions, therefore 

they are obtained in a numerical manner by means of a dynamical downscaling technique, from a global climatic 

model. In this work, boundary conditions are obtained from the results of ECHAM4 global model [1]. This 

circumstance limits the adoptable spatial resolution, because the resolution ratio (global/regional) cannot be larger 

than eight. Initial conditions can be calculated on the basis of experimental observations made by survey stations. 

The discretization of the fluid dynamics equations is performed by using finite difference approximation, on a 

computational grid defined in a rotated spherical coordinate system. The pole is tilted and can be positioned such 

that the equator runs through the centre of the model domain. Problems resulting from the convergence of the 

meridians can be minimized for any limited area model domain on the globe. Especially, for a very small domain 

with negligible impact of the curvature of the earth's surface, the equations become identical to those for a tangential 

Cartesian coordinate system. Three time integration algorithms are available: the first one is based on a second order 

accurate Runge-Kutta method on two time levels; the second is based on the “horizontal explicit - vertical implicit” 

variant of Leapfrog scheme, the third based on a semi-implicit Leapfrog scheme on three time levels. The 

parallelization is done by horizontal domain decomposition using a soft-coded 2-gridline halo. The Interface 

software MPI is used as Message Passing. 

The numerical simulations will be performed on the new NEC SX-9 supercomputer, installed at CMCC-Lecce 

(Italy). It is a vector/parallel multiprocessors machine with 7 nodes, each of which having 16 processors, for a global 

number of 112 processors. Each processor has a peak performance of 102.4 GFlops, so the peak performance is 11.4 

TFlops; the system has 3,5 TBytes of central memory. The intranode data transfer rate is 4 TBytes/sec, while the 

internode data transfer rate is 2x128 GBytes/sec. The system has 50 TBytes of disk space. The operating system is 

NEC SuperUX 18.1, while Fortran90, C/C++ compilers are available. This machine is ideal for weather 

forecasting, fluid dynamics and environmental simulation, as well as simulations for as-yet-unknown materials in 

nanotechnology and polymeric design. Performances of COSMO-CLM, in terms of parallel speed-up, will be given. 

Different numerical experiments performed with CCLM in the Alpine Space will be presented in order to evaluate 

the model performances on this area; particular attention will be given to the study of the precipitations.  Some 

simulations will be performed also on a cluster of 30 IBM P575 nodes, installed at CMCC-Lecce. Each node has 32 

Power6 (4.7GHz) cores,  for a global number of 960 cores. The peak performance is about 18 TFlops; each node has 

128 GB of  memory. The cluster is characterized by Infiniband 4x DDR interconnection, while the operating system 

is AIX v.5.3. 
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Abstract: In this paper, a virtual mesh refinement (VMR) algorithm for unstructured grids is 
presented in a parallelized direct simulation Monte Carlo code (PDSC) which features 
transient adaptive sub-cell (TAS). This algorithm is a virtual mesh refining process, in which 
the background mesh is refined based on an initial DSMC simulation. The refined cells are 
designed in a way similar to the structured grid, which makes the particle tracing on them very 
efficient, unlike on unstructured grids. These refined cells are only used for particle collision 
and sampling to physically resolve the collision mechanics. Only a refined cell, which includes 
centroid of the background cell, in a background cell is used for outputing macroscopic data. 
Two hypersonic flows including a hypersonic cylinder flow and a scramjet flow are simulated. 
Results show that the simulations using VMR can faithfully reproduce the benchmark case 
with a much reduced computational time. Corresponding parallel performance of this VMR in 
PDSC up to 128 processors will be presented in the conference. 
Keywords: virtual mesh refinement, parallel direct simulation Monte Carlo, unstructured grid. 

 

1. INTRODUCTION 

The direct simulation Monte Carlo (DSMC) method is a computational tool for simulating flows in which effects 
at the molecular scale become significant [1]. The computational domain itself is divided into either a structured or 
unstructured grid of cells which are then used to select particles for collisions on a probabilistic basis and also are 
used for sampling the macroscopic flow properties.  The method has been shown to provide a solution to the 
Boltzmann equation as the number of simulated particles tends toward the true value within the flow field [2]. The 
DSMC cells are used for particle collisions and sampling of macroscopic properties, in which the sizes have to be 
much smaller than the local mean free path for a meaningful simulation. To obtain a better spatial and physical 
resolution, several mesh-refining strategies have been developed in the DSMC community. For Cartesian structured 
grids, a two-level mesh-refining approach has often been adopted [1,3]. One of the major advantages of this mesh-
refining approach is the fast particle tracking as the background mesh.  However, the mesh refining process may 
become awkward along the complex geometry of objects. For unstructured grids, an isotropic mesh-refining method 
based on h-refinement concept has been proposed [4,5]. One of the major advantages of this approach is the 
capability in body-fitting any complicated geometry of objects. However, there exists several major disadvantages, 
which include: 1) difficulty in maintaining mesh quality even with complicated mesh quality control algorithm, 2) 
very complicate hanging-node removing algorithm, especially for three-dimensional case [4] and 3) inefficient 
particle tracing on the refined cells. Thus, an alternative algorithm of mesh refinement on unstructured grids, which 
is free of the above problems, is critical in applying unstructured grids in the parallel DSMC method [6] . 

Recently, Tseng et al. [7] had proposed a transient adaptive sub-cell (TAS) approach in DSMC utilizing 
unstructured grids to ensure better collision quality. In this paper, a new mesh-refining process for DSMC using 
unstructured grids, which is based on the idea of TAS, is introduced to “virtually” refine the background cells, which 
is named as virtual mesh refinement (VMR) algorithm. 

2. VIRTUAL MESH REFINEMENT ALGORITHM 
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In general, the DSMC procedure involves: 1) moving the particles ballistically over a small time step and 
applying boundary conditions to particles which collide with boundaries, 2) indexing the particles within the grid of 
collision cells, 3) selecting particles from within the cells on a probabilistic basis and applying the collision routines 
to these, and 4) sampling the macroscopic flow properties from the collision cells. The cells are used to collision and 
sampling. To maintain a good quality of collision, the cell size has to be 1/2-1/3 of local mean free path, which is 
difficult in practice, since solution is generally not known in priori. In this section, we introduce a new mesh-
refining procedure for the DSMC method which utilizes unstructured grids. This procedure is termed as two-level 
virtual mesh refinement (VMR), which is introduced next. It is termed “two-level” due to the fact that background 
grids are the first level while the refined grids are the second level. 

 
Fig. 1: Temporal evolution of the proposed DSMC procedures with VMR. 

 
Fig. 2: Typical refined cells (dashed lines) on a triangular background cell (solid lines) along with TAS. 

Fig. 1 shows the temporal evolution of the DSMC method with the VMR module, which is described next. These 
steps include: 1) The initial DSMC simulation on the background grids, 2) Virtual mesh refinement based on the 
data obtained in Step 1), 3) Adjusting the time step size and particle weighting in the refined cells accordingly, 4) 
Generating and randomly distributing particles in the refined cells based on Maxwellian distribution of velocities, 
and 5) Final DSMC simulation on the refined grids. Note TAS function is used throughout the whole procedures to 
ensure the good collision quality. Some of the details in the above procedures are described in the following.  

In Step 2), the results of the initial DSMC simulation are used to determine the local mean free path in each 
background cell, which is then compared with the corresponding cell size. The result of comparison is then used to 
calculate the number of refined cells in each coordinate direction required to resolve the local mean free path in 
background cell. Note the refined cell is organized as Cartesian structured grids with the same cell size. Refined cell 
size is normally taken to be less than one half of the local mean free path, although it can be controlled by the user. 
A typical example is schematically shown in Fig. 2. One important advantage is the particle tracing becomes very 
efficient which results directly from the use of Cartesian structured grids for the refined cells. The sub-cell in each 
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background cell, which contains the background cell centroid, is also identified in this step. This will be used in the 
final data output. In addition, area of each sub-cell (“area” in two-dimensional case; “volume” in three-dimensional 
case), which is geometrically inside the background cell, is calculated using the Monte Carlo (MC) method. Note the 
area of the sub-cell (or volume) is required in calculating the number of collision pairs such as NTC method [1]. The 
reason not to apply the conventional method such as coordinate geometry is that it becomes very cumbersome and 
complicated as it is extended to three-dimensional case. The MC method is easy in concept as well as practical 
implementation, as shown schematically in Fig. 3. Each particle with randomly assigned position is checked if it is 
located in the background cell. Once it is located in the background cell, then the sub-cell which contains the particle 
is easily determined by taking advantage of the Cartesian structured sub-cells. Only those particles located inside the 
sub-cell and background cell are counted for the area calculation. The area of the ith sub-cell inside the background 
cell is thus calculated as follows: 

         
1

/
vc

i

N

vc c i i
i

V V R R
=

= × ∑                            (1) 

where Ri is the number of particles located inside the ith sub-cell, Vc is the area of background cell and Nvc is the total 
number of sub-cells. Our experience shows that approximately 5,000*Nvc particles are required to reach 0.1% error 
for area calculations of all the sub-cells, which takes about 12.5 minutes of computational time for ~300,000 virtual 
sub-cells using 12 processors. This computational overhead is comparatively low as compared to the total DSMC 
simulation in general. 

 

. 

Fig. 3: Sketch of calculating the sub-cell area inside an unstructured background cell using Monte Carlo method. 

3.  RESULTS AND DISCUSSION 

In this paper, we implement and verify the proposed VMR module in the PDSC by simulating a two-dimensional 
hypersonic flow over a circular cylinder (M=10) using various types of grids, including purely quadrilateral and 
mixed triangular and quadrilateral. Approximately 40 particles per cell for all the cases are maintained throughout 
the simulations. In addition, VHS collision model [1] and variable time step (VTS) scheme [4] are applied in the 
simulations unless otherwise specified. Note no chemical reactions are considered in the simulations. Finally, we 
apply this newly developed VMR algorithm in simulating two scramjet flows (M=12, Kn=0.02 and 0.06) using 
PDSC to demonstrate its capability in resolving flows with highly varying density. 

3.1 M-10 Hypersonic Flow Past a Circular Cylinder 

Note this problem has been adopted by Bird [8] as the benchmark for DSMC recently. Important free-stream flow 
conditions include: argon gas, velocity of 2634.1 m/s, temperature of 200K, number density of 4.274E20 m-3, and 
Mach number of 10. Corresponding free-stream Knudsen number is 0.0091 based on the free-stream mean free path 

Included in sub-cell area 

Excluded in sub-cell area 
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(λ∞=0.003 m) and the diameter of the cylinder (D=0.3048 m). There are four simulations, which are termed as 
Benchmark (only quadrilateral grids), VMR (mixed grids), TAS (mixed grids), and None (mixed grids). Note the 
cell size is 1/5-1/2 λ∞ for the case of Benchmark using quadrilateral mesh, while those are only approximately 1-2 
λ∞ for the other three cases using mixed quadrilateral-triangular mesh. The number of cells of the former case is 
195,000, while that of the latter cases is 12,825. Approximately 40 particles per cell are maintained for all the four 
simulation cases. Using 16 processors of a cluster, the computational time is ~18 hours for the benchmark case, 
while it is reduced to 5 hours for the Case-VMR, which can still faithfully reproduce the results of Case-Benchmark. 

         
Fig. 4 Contours of properties of Mach 10 hypersonic flow past a circular cylinder. (left) density. (right) temperature. 

Fig. 4 shows the contours of density and temperature for all the cases. Results clearly show that the results of the 
cases of VMR and TAS are very close to the benchmark data in general, while the results of Case-None shows large 
discrepancy with the Case-Benchmark, especially in the wake region. Note in the wake region the case-VMR is 
closer to the Case-Benchmark than the other two cases. Fig. 5 shows the surface properties as a function of angle 
measured from the front stagnation point. It shows that the local pressure coefficients are generally one order of 
magnitude larger than the local friction coefficients in most regions, except in the wake region. Results of pressure 
coefficient of all the test cases are in excellent agreement with those of the benchmark case. The friction coefficients 
of Case-None and Case-TAS clearly over predict the peak value, while those of Case-VMR agree very well with 
those of Case-Benchmark. Similarly, the heat transfer coefficients of Case-None and Case-TAS deviate very much 
from those of Case-VMR and Case-Benchmark. 

 

Fig. 5  Surface property distribution as a function of distance from the front stagnation point. (left) Local 
pressure coefficient. (middle) local friction coefficient. (right) local heat transfer coefficient. 

3.2 M-12 Scramjet Flow  

Fig. 6 illustrates the sketch of the simulation domain of the scramjet flows. Important free-stream flow 
conditions include: argon gas, velocity of 2634.1 m/s, temperature of 208K, number densities of 4.23E+21 (Kn=0.02) 
and 1.41E+21m-3 (Kn=0.06), and Mach number of 12. Number of particles is approximately 30 and 10 millions, 
respectively, for the Kn=0.02 and Kn=0.06 case using 64 processors of IBM-1390 at National Center for High-
Performance Computing of Taiwan. 
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Fig. 7 shows the simulated pressure and temperature contours of the two cases. Results show that contour 
becomes smoothed out as rarefaction increases. Results of surface properties and paralel performance will be 
presented in the conference 

 

 

 
Fig. 6 Sketch of the simulation domain of a scramjet flow (unit: meter) 

 

     
Fig. 7 Simulated pressure (left) and temperature(right  contours of the scramjet argon flows(M=12). 

 

4. CONCLUSIONS 

In this paper, we have developed a virtual mesh refinement (VMR) and implemented in the parallel direct simulation 
Monte Carlo code (PDSC) which utilizes unstructured grids. A M-10 argon flow past a cylinder was used to 
demonstrate the use of VMR not only can reproduce the results of time-consuming benchmark case, but also can 
greatly reduce the computational time. Finally, a 2D scramjet argon flow was simulated to demonstrate the 
robustness of this new mesh-refining algorithm in unstructured DSMC. 
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Abstract: We present results of numerical 3D simulation of interaction of MHD waves
with the sunspot. Self consistent magnetohydrostatic model of the sunspot was chosen
as the background model. Using filtering technique we separated magnetoacoustic and
magnetogravity waves. It is shown, that inside the sunspot magnetoacoustic and mag-
netogravity waves are not spatially separated unlike the case of the horizontally uniform
background model. The sunspot causes anisotropy of the amplitude distribution along
the wavefront and changes the shape of the wavefront. The amplitude of the waves is
reduced inside the sunspot. This effect is stronger for the magnetogravity waves than
for magnetoacoustic waves. The shape of the wavefront of the magnetogravity waves is
distorted stronger as well.

Keywords: solar oscillations, sunspots, MHD waves

1. INTRODUCTION

Turbulent convection in the Sun generates acoustic waves. These waves can be observed at the
surface by measuring the doppler velocities. Using techniques of local helioseismology it is possible
to reconstruct the internal structure (vertical profiles of sound speed and flows) of active regions
in the Sun from such observations. In the background magnetic field of active regions different
types of waves can exist: fast, slow, Alfven, and magnetogravity waves. All these waves have
different dispersion relations, velocities and can convert to each other, that even more complicates
the analysis.

In general, the main factors causing variations in wave amplitude and helioseismic travel times
in solar magnetic regions, can be divided in two types: direct (due to the additional magnetic
restoring force) and indirect (due to the changes in the convective and thermodynamic properties
in magnetic regions). The indirect effects of the suppressed excitation of acoustic waves in sunspot
regions were investigated in [1]. The issue of the influence of the inclined magnetic field was raised
by Schunker et al. in [2], who found that the phase shift of the signal in the penumbra of a sunspot,
measured by the acoustic holography technique varies with the sunspot position on the disk. They
attributed this to the variations of the angle between the inclined magnetic field of the penumbra
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and the line-of-sight. In this situation the detailed numerical simulation of scattering of MHD
waves by sunspots is extremely welcome.

2. GOVERNING EQUATIONS AND NUMERICAL SCHEME

Propagation of MHD waves inside the Sun is described by the following system of linearized
equations:

∂ρ�

∂t
+∇ · m� = 0,

∂m�

∂t
+∇p� − 1

4π
�
(∇× B�)× B0 + (∇× B0)× B�� = ρ�g0 + S,

∂B�

∂t
= ∇×

�
m�

ρ0
× B0

�
,

∂p�

∂t
+ c2

s0

�
∇ · m� +m� ·

� ∇p0

Γ1p0
− ∇ρ0

ρ0

��
= 0,

(1)

where m� = ρ0v
� is the momentum perturbation, v�, ρ�, p�, and B� are the perturbations of

velocity, density, pressure, and magnetic field respectively, S = (0, 0, f(x, y, z, t))T is the wave
source function, f(x, y, z, t) is the density of z-component of force, ρ0, p0, cs0, and B0 are the
density, pressure, sound speed, and magnetic field in the background state.

The spatial and temporal behavior of the wave source is modeled by function f(x, y, z, t) ≡
AH(r)F (t):

H(x, y, z) =

⎧
⎪⎨
⎪⎩

�
1− r2

R2
src

�2

if r ≤ Rsrc

0 if r > Rsrc

(2)

F (t) =
�
1− 2τ2

�
e−τ2

, τ =
ω0(t − t0)

2
− π, t0 ≤ t ≤ t0 +

4π
ω0

, (3)

where A is the amplitude of the source, Rsrc is the source radius, r is the distance from the source
center, ω0 is the central source frequency, t0 is the moment of the source initiation. This source
model provides the wave spectrum, which closely resembles the solar spectrum. It has a peak near
the central frequency ω0 and spreads over a broad frequency interval.

We developed a semidiscrete code of high order for numerical solution of equations (1). The
spatial high-order finite difference (FD) scheme was optimized to preserve the dispersion relation of
the continuous problem (see [3]). The coefficients of this FD scheme are chosen from the requirement
that the error of the Fourier transform of the spatial derivative is minimal. It can be shown that the
4th-order dispersion relation preserving (DRP) FD scheme describes short waves more accurately
than the classic 6th-order FD scheme. A 3rd-order, three-stage strong stability preserving (SSP)
Runge-Kutta scheme, described in [4], with the Courant number, C = 1, is used as a time advancing
scheme.
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To prevent spurious reflections of acoustic waves from the horizontal boundaries, we estab-
lished non-reflecting boundary conditions based on the Perfectly Matched Layer (PML) method
at the top and bottom boundaries. The method is described in [5]. The top boundary was set
at the height of 500 km above the photosphere. This simulates a realistic situation when not all
waves are reflected from the photosphere. Waves with frequencies higher than the acoustic cut-off
frequency pass through the photosphere and are absorbed by the top boundary. This naturally
introduces frequency dependence of the reflecting coefficient of the top boundary. The lateral
boundary conditions are periodic.

The efficiency of the high-order FD schemes can be reached only if they are combined with
adequate numerical boundary conditions. We followed Carpenter et al. [6] and used an implicit
Padé approximation of the spatial derivatives near the top and bottom boundaries to derive a stable
3rd-order numerical boundary conditions consistent with the 4th-order DRP numerical scheme for
interior points of the computational domain. Waves with the wavelength less than 4∆x are not
resolved by the FD scheme. They lead to point-to-point oscillations of the solution that can cause
a numerical instability. Such waves have to be filtered out. We use a 10th-order digital filter to
eliminate unresolved short wave component from the solution at every 5th time step. Details of
numerical realization of the code can be found in [7]. The code is written in C++, parallelized,
and optimized for running on multiprocessor super computing systems with shared memory.
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Fig. 1.— Snapshot of the z-component of momentum ρ0V
�
z at moment t=16.7 min. The left panel

represents the horizontal slice of the domain at the photospheric level. The right panel represents
the vertical slice. Solid black curves in the right panel represent magnetic filed lines.

3. RESULTS AND DISCUSSION

In this section we present our results of numerical simulation of propagation of MHD waves
through the sunspot in Cartesian geometry. The domain of simulation is a box of size 27.6×27.6×7.5
Mm3 (184×184×62 nodes). Waves are generated by a single source of vertical force with central
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Fig. 2.— Separation of p- and f -modes by filtering. The top row represents the original and filtered
k-ν diagrams. The bottom row represents the corresponding maps of z-component of velocity at the
moment of t = 20 min. for p- and f -modes respectively. The solid circle marks the inner part
of the p-mode wavefront. The black and white solid curves in the panels of the top row show the
position of the theoretical f -mode ridge.

frequency ν = 3.5 mHz placed 100 km below the photosphere. The horizontal grid is uniform with
∆x = ∆y = 150 km. The vertical grid is non-uniform. The grid step ∆z varies from 50 km near
the photosphere to 400 km near the bottom of the computational domain. Time step ∆t = 0.1
s was chosen to satisfy the Courant stability condition. The background model of the sunspot is
based on solution of the nonlinear magnetostatic equations (for details see [8]). The values of the
magnetic field at the axis of the sunspot are 0.843 kG and 28.9 kG at the photospheric level and
the depth of 6.7 Mm respectively.

The simulation results are shown in Figure 1. The horizontal white line in the left panel near the
top boundary marks the position of the photosphere. The generated wave field is a mixture of fast,
slow MHD, Alfven and surface magnetogravity waves. The Alfven wave is generated at the source
location and slowly propagates inside the sunspot along the magnetic field lines. Magnetogravity
and magnetoacoustic waves have different speed, dispersion relations and can be easily separated by
applying an appropriate filter in k-ω space. The result of such separation is shown in Figure 2. The
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bottom row represents horizontal maps of V �
z at the photospheric level for p-modes (left panel) and

f -modes (right panel). These maps are obtained by the inverse Fourier transform of corresponded
filtered k-ω diagrams from the top row. The black solid circle in the panels of the bottom row marks
the inner part of the p-mode wavefront. It is clear, that unlike the case of horizontally uniform
background model, magnetoacoustic and magnetogravity modes are not spatially separated inside
sunspots.

The non-uniform background model causes anisotropy of the amplitude distribution along the
wavefront and asymmetry of the wavefront itself. When the wave enters the sunspot the part of the
wavefront closest to the sunspot center speeds up that deforms the shape of the wavefront. This
effect is stronger for the magnetogravity modes than for for magnetoacoustic modes. Amplitude
of the wave is smaller inside the sunspot. Decreasing of the wave amplitude for density and
velocity variations near the center of the sunspot is caused by two reasons: variations of the
background density and transformation into different types of MHD waves. When the wavefront of
the magnetoacoustic mode passes the sunspot, its amplitude is restored to the previous value while
the part of the wave front of the magnetogravity wave which passed through the sunspot shows
deficit of the amplitude. This can be an evidence that the magnetogravity wave is transformed into
different types of MHD waves more than the magnetoacoustic wave.
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Abstract: In this present age as Computational Fluid Dynamics (CFD) grows, there are 
immense opportunities of using CFD tools in standard undergraduate curriculum. The present 
investigation is aimed at exploring the power and efficiency of a two blade Savonius Wind 
turbine. Computational Fluid Dynamics software package (Fluent) was utilized to make these 
comparisons with extremely well refined meshes and theoretically found boundary conditions 
and parameters. Performance analysis has been on the basis of starting characteristics, static 
torque and rotational speed. The major aim of this study is to go through the development and 
comparisons to create a Numerical Model of 2D Vertical Axis Wind Turbine (VAWT) that can 
be used as a template for any VAWT aerodynamic analysis. 
The author has investigated two major meshing techniques to create the Numerical Model.The 
first part models a steady state and unsteady Deformation meshing technique, whereas the 
second part uses a Sliding Mesh model.  
The paper also provides guidance to undergraduate students and upcoming researchers in the 
area of Computational Fluid Dynamics on how to create 2D meshes of such applications in 
Gambit and the methodology and process required to further solve it in an appropriate solver 
 
Keywords: Wind turbines, Savonius, Vertical Axis, Sliding Mesh 




1. INTRODUCTION 

Wind power is the conversion of wind energy into a useful form, such as electricity, using wind turbines. At the end 
of 2008, worldwide nameplate capacity of wind-powered generators was 120.8 gigawatts[3]. Although wind 
produces only about 1.5% of worldwide electricity use [3] it is growing rapidly, having doubled in the three years 
between 2005 and 2008. One of the wind rotors of a vertical axis, Savonius wind rotor was developed by a Finnish 
engineer, Sigurd Savonius, in 1925 [14]. The performance of these rotors is lower than that of the other conventional 
wind rotors but even so, they have a number of advantages over the others. For example, design of such rotors is 
simple and cheap. They start to run on their own and they are independent of the direction of the wind. They also 
have a high starting torque. Despite such a certain number of advantages of Savonius wind rotors; they are not 
preferred so much due to their low aerodynamic performance levels. To eliminate this disadvantageous quality of 
Savonius wind rotors, several studies have been done in recent years in order to improve their aerodynamic 
performance. Therefore, a lot of theoretical and experimental studies have been carried out to increase the 
performance of Savonius wind rotors. A number of scientists have tested many models through the studies that they 
have done in the static and dynamic state of Savonius wind rotor. In these studies they have experimentally and 
numerically examined the effects of various design parameters such as the rotor aspect ratio, the overlap and the 
separation gap between rotor buckets, the profile change of the bucket cross-section, the number of buckets, the 
presence or absence of rotor endplates, and the influence of bucket stacking [14–19]. Significant steps have been 
taken in the improvement of power and torque performances of Savonius wind rotors through the above mentioned 
studies. In another group of studies, however, pressure distributions on the blades have been measured to analyze the 
flow field and aerodynamic performance in and around a rotating and static Savonius wind rotor experimentally and 
numerically [20–31]. Aldoss [26] has carried out an experimental study on the aerodynamic performance of 
Savonius wind rotor by using a swinging blade rotor. Later, Aldoss et al. [27] have developed this study and 
improved the performance of Savonius wind rotor by allowing the rotor blades to swing back with an optimum 
angle. Tabassum and Probert [28] and Reupke and Probert [29] have found out that with the Savonius wind rotor 
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with hinged blades, which they have separately designed, higher torques could be acquired at rather lower end 
speeds than with the conventional Savonius wind rotors. 
 
1.1 Present Study  
 
A conventional Savonius wind rotor is made up of two semi-cylinders, called blades, which are placed in between 
two horizontal discs and the centers of which are symmetrically sided. The wind hitting the Savonius wind rotor at a 
certain speed creates a positive torque in the inner part of the cylinder forming the rotor and a negative torque in its 
outer part. Since the torque in its inner part is higher than the torque in the outer part, a rotation movement is 
secured. Below is a simple figure for the running principle of the Savonius wind rotor (Fig 1). In the present study, 
Fluent 6.3 Student Version software has been used as the computational fluid dynamics (CFD) package program. 
The Savonius wind rotor in the dynamic position has been analyzed from aerodynamic aspects. Fluent is a CFD 
software using the finite sizes method and has the capacity of solving the flow around complex geometries. 
Modelling of the study has been made by using the Gambit 2.0, a program of Fluent for creating a model and 
network. In the Fluent 6.3 program, physical properties of the flow have been defined; analysis technique and 
turbulence model have been selected; the number of iterations and convergence values have been determined by 
entering the values of boundary conditions, and finally analysis have been made. To do the numerical analysis in a 
shorter time, the model has been formed to have two dimensions. The information determined is compared the 
available experimental such as the results of Burçin Deda Altan and Mehmet Atılgan (9).  

 
Fig 1: Direction of the Torque exerted by the wind on the turbine blades. 

 
2.1 Steady flow 

One of the first steps in steady-flow analysis is to locate control points; that is, points along the stream where the 
elevation can be computed once the steady flow is selected. At least one point of known elevation is needed to start 
the computations. For subcritical flow, this point, called an initial condition, will be the downstream boundary of the 
region of interest.  

In Fluent 6.3, the flow features associated with multiple rotating parts can be analyzed using the multiple reference 
frame   (MRF) capability. This model is powerful in that multiple rotating reference frames   can be included in a 
single domain. The resulting flow field is representative of a snapshot of the transient flow field in which the 
rotating parts are moving. However, in many cases the interface can be chosen in such a way that the flow field at 
this location is independent of the orientation of the moving parts. In other words, if an interface can be drawn on 
which there is little or no angular dependence, the model can be a reliable tool for simulating time-averaged flow 
fields. It is therefore very useful in complicated situations where one or more rotating parts are present. [25] 
 
2.2 Standard K-epsilon Turbulence model 

The K-epsilon model is one of the most common two equation turbulence models.  
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2.3 Results 
 

Angular Speed (rad/s) Total force (N) Torque(n.m) Power  Power Factor 

3 4.76 2.82 8.57 0.31 

5 4.88 2.89 14.30 0.52 

7 4.98 2.97 19.31 0.71 

9 5.02 3.01 27.13 1.02 

11 5.03 3.06 33.20 1.22 
 
Table 1: Parameters obtained from Fluent 6.3  
 
2.4 Discussion 
 
The K-epsilon model predicts excessive levels of turbulence shear stress, particularly in the presence of adverse 
pressure gradients leading to suppression of separation on curved walls. The values in Table 1 indicate that the 
power factor is increasing in a linear manner. According to the experimental results used to compare the 
computational results, the maximum power factor achieved should be below 11rad/s. This therefore proves that this 
numerical model is not the optimum simulation of real life characteristics of a Vertical Axis Wind Turbine. 
 
3.1 Unsteady 

In unsteady-flow analysis, computational elements and algebraic approximations to the differential or integral terms 
in the governing equations must be used to develop two algebraic equations for each computational element written 
in terms of elevations and flows at the ends of the element. These governing equations are more complex than those 
for steady-flow analysis. For unsteady flow, a computational element with respect to time also must be considered, 
but it is simple: the time axis is divided into finite increments that, ideally, will be short enough so that the algebraic 
approximations of the differential and integral terms will be sufficiently accurate. Because of this dependence on 
time, the algebraic governing equations involve not only the unknown flow and elevation at two points along the 
channel but also at two points in time.  

3.2 K epsilon 
 
The turbulence kinetic energy and the turbulent dissipation rate were set as 1. The inlet velocity was chosen as 5 
m/s. The angular velocity of the blades was increased in 2 rad/s increments starting at 3 rad/s. The mesh was adapted 
with velocity gradients after initial iterations of Time step size 0.002 seconds and 20 iterations per time step.  

Angular Speed (rad/s) Total force (N) Torque(n.m) Power (kWatts) Power Factor 

3 11.82 7.09 0.02 0.07 

5 14.17 8.50 0.04 0.15 

7 14.94 8.96 0.06 0.22 

9 19.54 11.72 0.10 0.37 

11 16.33 9.79 0.09 0.29 
 
Table 2: Parameters obtained from Fluent 6.3  
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3.3 Discussion 
 
Due to computational time and resources only one model of unsteady solution through the MRF method was 
considered. After viewing Table 2 it can be noted that the Power factor maxes out around approximately 9 rad/s. 
Comparing the power factor results to the experimental results conducted by previous researchers the values are 
from the Power Factor vs. Angular velocity curves obtained by them. The results obtained from the unsteady k-
epsilon model are the closest to experimental results compared to the previous methods. 
 
4.1 Sliding Mesh Model 
 
For the second half of the study, a sliding mesh model was created. Two separate meshe were created. These were 
then merged with the ‘tmerge’ capabilities of Fluent 6.3. The model was then exported as a 2D mesh and imported 
into Fluent 6.3 for solving. The parameters of the Unsteady K-epsilon model previously used was against 
implemented for the sliding mesh model. 
 
4.2 Results 
 

 
Fig 2: Turbulence Intensity Contours – 10rad/s – Sliding Mesh Model  

 

Angular Speed (rad/s) Total force (N) Torque(n.m) Power (kWatts) Power Factor 

3 12.24 7.34 22.03 0.08 

5 23.72 14.22 71.16 0.263556 

7 18.71 11.22 78.58 0.29 

9 11.52 6.91 62.20 0.23 

11 8.22 4.93 54.25 0.20 
 
Table 3:  Parameters obtained from Fluent 6.3 
 
4.3 Discussion 
As can be viewed from Figure 2 the rotation of the meshes has been accomplished. This is unlike the previous 
method where the fluid was modeled to rotate using the reference frame technique.  
Table 3 clearly shows that the maximum power factor is approximately around 5 and 7 rad /s. These results tally 
with the experimental results conducted by previous researchers [11] proving that this is the most optimum 
Numerical model for validating Vertical Axis Wind Turbines.For future, relaxation schemes and different 
discretization schemes might be investigated to increase the convergence rate. 
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1. Introduction

Turbulent Poiseuille or Couette flows inside a square or rectangular cross-sectional duct are
of considerable engineering interest because of their relevance to the compact heat exchangers
and gas turbine cooling systems. The most studied flow is the turbulent Poiseuille type inside
a square duct. Experimental studies on turbulent Poiseuille flows had shown that, near the
corners, a transverse circulatory flow exists which is not observed in circular ducts nor in laminar
rectangular ducts. The transverse motion is derived from the anisotropy of the turbulent stresses
and is identified as the secondary flow of Prandtl’s second kind.

Numerical simulations of large eddy (LES) and direct numerical (DNS) simulations of square
duct flows were conducted by Madabhushi and Vanka [1] and Gavrilakis [2], respectively, where
the bulk Reynolds numbers are 5810 and 4410. Square duct flow but at higher bulk Reynolds
number, 10320, were also investigated by Huser and Biringen [3] using DNS. There are also
investigations directed to explore the influences of the bounding wall geometry, non-isothermal
effect, free surface and system rotation on the secondary flow pattern within turbulent Poiseuille
duct flows However, little is known about the effect of moving wall on the turbulence anisotropy
and hence the resulting secondary flow within duct flows, and a brief report was documented in
[4]. Therefore, the present study aims at obtaining a detailed description of turbulent Poiseuille
flows and Couette flows inside square duct through the DNS. The framework of the present nu-
merical procedure incorporates the finite volume method and the staggered grid arrangement.
The time integration method is based on a semi-implicit, fractional step method. Flows con-
sidered here are fully developed flow within square duct and the geometry is shown in Figure
1. Grid (128x128x256) is symmetrically clustered using hyperbolic tangent functions towards
the walls on the cross-plane of the duct with minimum and maximum spacing∆ x+,∆y+ ap-
proximately as 0.2 and 5.94. In the streamwise direction, the grid is uniformly distributed with
∆z+ ∼ 8.9.

2. Results

The basic flow parameters are summarized in Table 1, where PP stands for plane Poiseuille
flow, PC is plane Couette flow, DP is square duct Poiseuille flow and DC is square duct Couette
flow. Reynolds number based on the bulk velocity is ranging from 5400 to 6200. For PP, PC
and DP, the stationary wall friction Reynolds number(Reτb) is around 360 based on the channel

∗Email address: calin@pme.nthu.edu.tw
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and duct height, and is 300 for DC. The effects of the boundary wall and the Couette velocity
on the turbulence distributions can be observed from Figures 2 and 3. Here, the DNS data
of plane channel flows (Moser et al.[5] and Abe et al.[6], Reτ = 180) and plance Couette flow
(Kawamura et al.[7] are also included for comparisons. It should be for square duct flows, the
profiles are along wall bisector at the stationary wall. It can clear observed by reference to Fig.
2 that for the Poiseuille flow, the influences of the bounding wall is marginal. However for the
Couette flow shown in Fig. 3, the turbulence intensities of the square duct flow is much higher
than those in the plane channel flow, indicating the extra strains induced by the bounding wall.
Figures 4 and 5 show the turbulent energy budgets for Poiseuille and Couette flow. Again, the
effects of the boundary wall is negligible for the Poiseuille flow. However, for the DC flow, it can
be clearly seen that the maximum production is 13 % higher than its plane counterpart. This
excess of production is further enhanced at the duct center region. It should be also noted that
at this region the level of pressure-strain exceeds that of the turbulence dissipation. However,
in the plane Couette flow, the magnitudes of these two processes are compatible.

REFERENCES

1. R. K. Madabhushi and S. P. Vanka, Large eddy simulation of turbulence driven secondary
flow in a square duct, Phys. Fluids A 3, (1991) 2734-2745.

2. S. Gavrilakis, Numerical simulation of low-Reynolds-number turbulent flow through a
straight square duct, J. Fluid Mech. 244, (1992) 101-129.

3. A. Huser and S. Biringen, Direct numerical simulation of turbulent flow in a square duct, J.
Fluid Mech. 257 (1993) 65-95.

4. W. Lo & C. A. Lin, 2006, Mean and turbulence structures of Couette-Poiseuille flows at
different mean shear rate in a square duct. Phys. Fluid 18,068103.

5. R. Moser, J. Kim & N. Mansour, 1999, Direct numerical simulation of turbulent channel
flow up to Retau=590. Phy. Fluids 11, 943.

6. H. Abe, H. Kawamura & Y. Matsuo, 2001, Direct numerical simulation of a fully devel-
oped turbulent channel flow with respect to the Reynolds number dependence. J. of Fluids
Engineering-Transacations of ASME 123, 382-393.

7. H. Kawamura, H. Abe & K. Shongai, 2000, DNS of turbulent and heat transport in a channel
flow with different Reynolds and Prandtl numbers and boundary conditions. 3rd In. Symp.
on Turbulence, Heat and Mass Transfer.

Table 1
TABLE 1. The flow conditions for simulated cases; Ww denotes the velocity of the moving wall
and WBulk is the bulk velocity; Rec = WwD

υ

ReBulk Reτb Rec

Case PP 6244 356 0
Case PC 5628 362 12800
Case DP 5477 357 0
Case DD 5426 295 17130
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DNS of Couette flows inside a square duct
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Figure 3. Turbulence intensity-Couette
flow along the wall bisector
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Abstract: Accurate potential energy surfaces for N3
+
 and N2O chemical systems are computed 

using state-of-the-art first principles electronic structure techniques. The computations are 

performed using parallelized software on the Columbia supercomputer. The data obtained 

from first principles quantum chemistry calculations provide the basis for the development of 

more reliable analytical interaction potentials for these chemical systems, which will be used 

to calculate rate coefficients for dissociation and rotation-vibration energy transfer reactions. 

Such reactions are important to describe the non-equilibrium flow field under the hypersonics 

speed conditions of space vehicle reentry. The resulting chemical data will be incorporated 

into CFD/radiation codes. This should significantly improve chemical kinetics model for the 

nitrogen/air atmosphere compared to existing empirical models.  

Keywords: chemical kinetics database, interaction potentials, first principals calculations, rate 

coefficients, hypersonics reentry. 

 

1. INTRODUCTION 

CFD modeling of hypersonic space flight requires a chemical kinetic database including reaction rate coefficients of 

such chemical reactions as molecular dissociation and vibration-rotation-translation energy transfer (VRT). These 

data are needed to capture the complex thermodynamics and nonequilibrium chemistry of real gas behavior and to 

predict the number densities of multiple species in the flow, their internal energies, and their radiative properties.  

Our goal is to develop the chemistry database using a first principles approach.  

 

First principles calculation of chemical reaction rates is a multistep process: (1) Determination of the interaction 

potential among the reactants at a grid of fixed nuclear geometries using highly sophisticated quantum mechanical 

methods. (2) Determination of a faithful analytical representation of the energies and forces on the grid of nuclear 

geometries. (3) Determination of cross sections and reaction rate coefficients using quasi-classical trajectories 

(QCT) calculations based on the analytic interaction potential derived in (2).   

 

Here we present the first principles calculations of the interaction potentials for the N2 + N
+
 and N2 + O systems. 

These calculations are the first step in the determination of VRT and dissociation rate coefficients for the two 

systems. The interaction potential of N2 + N
+
 will also be used to determine the rate coefficients of the charge 

exchange reaction N2 + N
+
 → N2

+
 + N.  

2. FIRST PRINCIPLES CALCULATIONS 

Accurate potential energy surfaces of N3
+
 and N2O chemical systems are computed using state-of-the-art multi-

configurational electronic structure methodology, such as the multi-configurational self-consistent field (MCSCF) 

[1], multi-reference configuration interaction (MRCI) and averaged coupled pair functional (ACPF) [2] methods. 

The computed surfaces include both long-range interactions between the molecules, and the parts of the surface that 

correspond to dissociation of one of the bonds. The calculations have been carried out at many (>1000) molecular 
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geometries. Such accurate first principles calculations are very time-consuming and require the use of multi-

processor computers in parallel.  

 

An example of one of the potential energy curves for the dissociation of the N-N bond (represented by the bond 

distance r) in the T-shaped configuration of N3
+
 is shown in Fig. 1. Such calculations have been performed for many 

different values of distance R between N2 and N.  

  

 

 

 

 

 

 

Fig. 1: Potential energy profile for N-N dissociation of the T-shaped N3
+
 structure with R=4 a.u. 

In the case of N2O, potential energy surfaces for both singlet and triplet spin states have to be considered when 

studying the N2 + O ⇒ N + N + O dissociation reaction. As seen from Fig. 2, these electronic states cross in the 

region of R between 3 a.u. and 4 a.u., and as a result, the triplet states are lower in energy for larger values of R 

(distance between N2 and O), while the singlet is the lowest state for short R’s. Examples of energy profiles for the 

singlet state N-N dissociation at a number of distances R are shown in Fig. 3. 

 

 

 

 

 

 

 

 

Fig. 2: Potential energy curves for N2 + O separation in the T-shaped orientation. 

Many more regions of interaction potentials for the N2 + N
+
 and N2 + O systems have been determined on grids of 

nuclear geometries. For both systems, the collision dynamics are complicated by the involvement of electronic 

excited states. Accurate data obtained from first principles quantum chemistry calculations for the N3
+
 and N2O 

systems provide the basis for the development of more reliable analytical interaction potentials for these systems. 

Such interaction potentials will be used to calculate rate coefficients for dissociation and VRT energy transfer. The 
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data will be incorporated into CFD/radiation codes. This should significantly improve chemical kinetics model for 

the nitrogen/air atmosphere compared to existing empirical models. 

 

 

 

 

 

 

 

 

 

Fig. 3: Potential energy curves for N-N dissociation of the singlet N2O. 

3. DIRECT DYNAMICS 

In addition to the studies described above, a different approach based on direct “on-the fly” dynamics will be 

demonstrated. The main advantage of this approach is that the fitting of analytical potential function is avoided and, 

thus, the multistep first principle computation process (described in the Introduction) becomes a single-step process: 

potentials and gradients for dynamical trajectories are computed directly using a quantum chemistry program. This 

approach is not common at present, because it is computationally extremely demanding and relies on the parallel 

implementation of the code to become feasible. We will demonstrate its future potential by showing examples of the 

“on-the fly” trajectories obtained using Columbia supercomputer. These calculations have been carried out using the 

electronic structure package GAMESS (General Atomic and Molecular Electronic Structure System) [3] that has 

high scalability and very efficient performance (Fig. 4). 

 

 

Fig. 4: Scalability of GAMESS on Columbia supercomputer. 
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ABSTRACT

A GPU-version immersed boundary-lattice Boltzmann method (IB-LBM) is developed on
a graphical processing unit (GPU) to simulate fluid-particle interaction problems [1]. This
method uses the lattice Boltzmann method to solve the incompressible flow field and the
immersed boundary method which applies a direct forcing method to capture the particle
motion [2]. By using the parallel device architecture developed by the graphics hardware, an
efficiency gain of up to one order of magnitude with respective to the CPU performance of a
PC is obtained. A D3Q15 LBM method is used in this paper. A direct forcing method for the
IB method is introduced in the LBM method to allow the flow velocity equal to the particle
velocity. A flow in a square pipe and a flow over a sphere are simulated to validate the
numerical method. As a demonstration of the efficient and capabilities of the new method,
sedimentation of two sphere particles in an enclosure is simulated.

Keywords: Immersed boundary method, Lattice Boltzmann method, Fluid-particle
interaction, Graphical processing unit, Direct forcing method

NUMERICAL TEST CASES
Three test cases are investigated by the proposed direct-forcing method. They include flow

in a square pipe, flow past a fixed sphere and sedimentation of one spherical particle in an
enclosure.

1 Flow in a square pipe
To demonstrate the efficiency of the GPU-version IB-LBM method, a flow in a square pipe

is simulated. The dimensions of the pipe is L-cm long, W-cm wide and H-cm high. The pipe
is simulated using L×W×H lattice points. Fig. 1 shows the velocity and pressure contours.
Table 2 shows the computation efficiency compared to the CPU performance.
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Fig 1. Pressure and velocity contours.

Table 2. computation efficiency compared to the CPU performance.

Case
L×W×H

CPU(fortran) (s) CUDA(s) ratio

50x20x20 13.72 2.547 5.4

50x50x50 8.22 1.078 7.62

100x100x100 62.0 7.969 7.78

150x100x100 90.01 11.0 8.18

2 Flow past a fixed sphere  
Here the flows past a fixed sphere are investigated. It is known that the flow over a sphere

is steady and axis symmetry till Re = 210. Four Reynolds numbers Re = 50, 100, 150, and
200 are selected in the test. Fig. 2 shows the computed streamlines with domain, 5×5×5. The
sphere is centered at (2.5, 2.5, 2.5) and its diameter is normalized to 1. A uniform Cartesian
grid is used with the size 1.0 zyx . Their vortex structures are very good and

attached to sphere nicely. Table 3 show the drag coefficient and vortex length, Lw, for Re =
100, 150, and 200. The compational results are good.
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Fig. 2. Computed streamlines for Re = (a) 50, (b) 100, (c) 150, and (d) 200.

Table 3.a The drag coefficient and vortex length for Re = 100.

Re
DC Lw

100 1.056 0.891

150 0.877 1.170

200 0.766 1.436

3 Sedimentation of one spherical particle in a wide closure

The sedimentation of a spherical particle in an enclosure is simulated. The dimensions of
the enclosure is 10-cm long, 10-cm wide and 16-cm high. The particle commences its
motion at a height H = 12 cm from the bottom. The fluid density in the simulations is in the
range from 960 to 970 3/ cmkg and the dynamic viscosity from 0.058 to 0.353 2/ mNs . The
particle has density 1120 3/ mkg and radius 1.5 cm. The enclosure is simulated using

100×100×160 lattice points and the particle is outlined by 15 lattice points. Figs. 3 and 4
show the particle trajectories and settling velocities between the experimental data and the
numerical results for four cases. It observed that the simulation results agree well with the
experimental results [3].
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Fig. 3. Comparisons between trajectories by simulations and measurements.

Fig. 4. Comparisons of the measured and simulated settling velocities.
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Abstract: The goal of the present work is to quantify the influence of shear or acceleration 
forces on the sedimentation of particles. The transport of suspended particles in a liquid 
medium is studied by means of the lattice-Boltzmann Method for the continuous phase in 
combination with a molecular-dynamics approach to describe the motion of suspended 
particles. Therefore, interactions among particles and between fluid and particles are modeled 
at particle scale. Phenomena at bulk scale are obtained by considering a sufficiently large 
representative elementary volume. 
Keywords: Particle suspensions, lattice Boltzmann method, sedimentation control. 

 

1. INTRODUCTION 

Solid particles like mineral, polymer or drugs are often transported as suspensions in a liquid medium. The transport 
operations should preserve the stability of the suspension, therefore the control of the sedimentation induced by 
gravity is a fundamental problem to address.  As pointed out in [1], the stability of a suspension under dynamic 
forces is different from that under static conditions. Different kinds of dynamic forces can occur and have been 
studied in the literature [1-2]. Numerical simulations may greatly improve the understanding of these phenomena, 
since they allow a very detailed assessment of the state of the suspension. In that context, in [3], the stability of a 
dilute suspension (particle concentration up to 8 wt.%) of spherical particles under horizontal movement of the 
system was studied by means of numerical simulations in addition to experiments. The goal of this study is to 
demonstrate the ability of the lattice-Boltzmann Method (LBM) to describe the dynamics of a suspension under time 
dependant external forces. 

2. COMPUTATIONAL APPROACH 

In order to perform numerical simulations of particle suspension, the following requirements have to be matched by 
the computational approach: (i) the hydrodynamic interactions at solid-fluid interfaces have to be reproduced with 
reasonable accuracy and (ii) the motion and interaction of thousands of particles have to be computed at  reasonable 
computational costs. In this work the LBM [4] is employed for the modeling of the continuous fluid phase. The 
LBM derives from a description of the fluid state based on the kinetic theory. In essence, the LBM is a discretization 
of the Boltzmann equation in terms of discrete velocity distribution functions of particle populations. The algorithm 
basically consists of a streaming step involving next neighbour nodes and a purely local collision steps, making the 
method particularly suited for massively parallel computations. The advantage of LBM as compared to other 
numerical schemes is its ability to simulate dynamic processes at fairly low computational costs. The molecular 
dynamics approach is used to update particle positions. It consists of Lagrangian tracking of individual spherical 
particles and considers the conservation of linear and angular momentum as well as the momentum exchange due to 
particle collisions. The coupling between fluid and particle motion is achieved by applying the immersed boundary 
approach on a Cartesian mesh. The most common way of modeling the no-slip boundary condition is the so-called 
“Bounce-Back” scheme [4], in which distribution functions are reflected back into the computational domain after 
the streaming step. This scheme was generalized by Ladd [5, 6] for moving boundaries as immersed particles. This 
formulation allows a simple calculation of forces and torques acting on every particle, except when two or more 
particles are in contact: in this case, the hydrodynamic (lubrification) forces have to be modeled and applied to the 
scheme, following the approach proposed in [7].  
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3.  RESULTS 

3.1 Validation of the code 

For validating of the LBM code a comparison is made between experiments reported in [8]. The motion of a single 
particle sedimenting in a viscous fluid is considered. In [8] PIV (particle image velocimetry) is used to measure the 
fluid velocity around the particle. Besides that the trajectories of the particles as well as sedimentation velocities are 
obtained for various Reynolds numbers in the range of 1.5 and 32. Here, the Reynolds number is defined in terms of 
the terminal velocity and the diameter of the particle. Two cases for Re=1.5 and Re=11.6 are shown. In Figure 1 the 
trajectories of the particle for these cases are presented as well as the particle velocities. The sequence in Figure 2 
and Figure 3 show respectively the contours of vertical velocity in different phases of the sedimentation process and 
a detail of the velocity vectors around the particle when the bottom has almost been reached. In the present both 
calculations the spherical particle is resolved by 4 lattice sites while the overall size of the domain is 55x87x55 
nodes.  For low Reynolds numbers after about one second a constant terminal velocity is obtained. As the particle is 
approaching the wall due to lubrification effects the velocity is slowly decreasing. This effect is well resolved using 
the LBM code. For higher Reynolds numbers the terminal velocity is significantly higher but the damping of the 
motion close to the wall is less distinctive. The full paper will also report on the problem of swapping trajectories if 
more than one particle is present as well as in the influence of a mean shear in the flow [9]. 

Fig. 1: Simulations (S) versus experimental measures (M) for trajectories (a) and sedimentation velocities (b). 
Re=1.5 and Re=11.6 cases are considered. 
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Fig. 2: Comparison of the flow field of sedimenting sphere at a) Re=1.5 and B) Re=11.6 

Fig. 3: Comparison of the velocity field of sedimenting sphere at a) Re=1.5 and B) Re=11.6 while approaching the 
bottom wall 

3.2 Particle suspensions under the influence of dynamic force fields 

The focus of the paper is on evaluating the influence of amplitude and frequency of a periodic forcing on the settling 
of a large cluster of spherical monodispersed particles due to gravity. The problem is characterized by means of non-
dimensional parameters in order to determine the influence of fluid/particle density ratio or particle size. The 
challenge of the present problem is the disparity of scales. On the one side, the computational mesh has to capture 
the details in the flow around a single particle which is discretized with at least 4-5 lattice cells. On the other hand, 
the effect of formation of secondary flows is only observed for reasonable large container sizes. Besides that, a 
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sufficiently large number of particles have to be considered in order to obtain reasonable statistics. 

Fig. 4: Final particles configuration of a suspension of 7860 particles.   
The oscillation period is 320 and the amplitude is 0.05 (in LBM units). 

In Figure 4, the particle positions are represented for a configuration of 7860 particles, each of them resolved with a 
diameter of 5 in lattice units. Figure 5 presents the instantaneous velocity field of the particles. In this case the 
particle/fluid density ratio is 1.5. The circulation flow induced by the periodical movement of walls is evident. Good 
comparisons with experimental results reported in [3] are achieved. Keeping the oscillation amplitude constant, the 
application of the horizontal movement clearly counteracts the sedimentation induced by gravity if the oscillation 
period is below a critical value. Thus, the stabilizing action is more effective as the oscillation frequency is 
increased. The full paper will in particular discuss the influence on oscillation amplitude and fluid/particle density 
ratio and the spatial resolution on the sedimentation control. 

Fig. 5: Instantaneous velocity distribution of a suspension of 7860 particles.   
The oscillation period is 320 and the amplitude is 0.05 (in LBM units). 
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Abstract: We present results from very simple OpenMP parallelization of a 3-D SOR

algorithm applied to a pressure Poisson equation on a shared-memory IBM P-Series

machine. It is observed that four processors is the maximum with which improvements

in speed up can be achieved.

Keywords: Poisson equations, sparse matrix solvers, successive overrelaxation.

1. INTRODUCTION

It is common knowledge that arithmetic required for CFD of incompressible flow problems is dominated

by that used for solution of the pressure Poisson equation and, hence, satisfaction of the divergence-free

constraint—i.e., mass conservation. There have been many classes of methods applied to this problem,

including the following: basic relaxation, Krylov-subspace-based methods of various types (e.g., GMRES and

BiCGStab(ℓ)), multi-grid and domain decomposition methods, and various combinations of these. None of

these has proven to be entirely satisfactory over wide ranges of elliptic problems, and there still is considerable

controversy regarding which type of method to use for any particular problem. It is, in fact, likely that no

single method will be superior for all pressure Poisson problems.

But there are general characteristics of these classes of methods that can be considered when making

comparisons amongst them, and between individual techniques, either within the same class, or across classes.

These are:

i) required total arithmetic ⇒ run time in serial mode;

ii) ease of implementation and use ⇒ less human time expenditure;

iii) parallelizability, including parallel efficiencies ⇒ faster turn around;

iv) effects of problem size on all of the preceding.

The first of these consists of the product of number of required iterations and arithmetic per iteration. The

second involves algorithm intricacies (including code for parallel constructs) in the case of implementation,

and selection of iteration parameters in the event that the entire solution algorithm is being applied to an

actual CFD (or other) problem by an “end user.” Parallelizability is, of course, algorithm dependent. But it

is also machine dependent and individual problem size dependent; finally, parallel speed ups are significantly

influenced by choice of OpenMP or MPI in the context of computing hardware employed, i.e., clusters or

SMPs.

Effects of problem size arise in essentially all of the above problem aspects, and they are most noticeable

(as problems become very large) in asymptotic convergence rates of iteration procedures, in cache utilization
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of any particular computer, and in specific details of parallelization efforts. “Large” problems generally result

in poor asymptotic convergence rates and degraded cache utilization, but improved parallel effectiveness.

Thus, within the confines of a given processor and a choice between OpenMP and MPI, our goal must be

to mitigate both asymptotic convergence rate and cache-miss problems while achieving good parallel speed

ups. In this study we investigate use of OpenMP applied to sparse linear systems arising from second-

order centered discretizations of the 3-D Poisson equation in the context of various forms of successive

overrelaxation. The study will be conducted on at least two different machines: one consisting of clusters

and the other featuring shared memory, and it will entail comparisons of different domain decomposition

strategies. This abstract contains only preliminary results from this ongoing study; the remainder will be

presented at the Parallel CFD Conference.

2. ANALYSIS

The pressure Poisson equation can be expressed as

∆p = f(x), x ∈ Ω ⊆ R
3 , (1)

with p being pressure and f corresponding to either an appropriately scaled divergence of the velocity field

or divergence of the advective terms of the Navier–Stokes (N.–S.) equations, depending, respectively, upon

whether one is constructing a projector to satisfy the divergence-free condition or computing the true physical

pressure which appears in the N.–S. equations (see, e.g., [1], for details). In (1) x ≡ (x, y, z)T is the Cartesian

coordinate vector so that for purposes herein the Laplacian is simply

∆ ≡
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2)

In the present study we will take Ω to be a right-angled parallelepiped. Finally, we note that for well

posedness, boundary conditions must be provided at all points of ∂Ω, the boundary of Ω. For the problem

considered in this abstract these will all be of Dirichlet type, but the final paper will contain results from

mixes of Dirichlet and Neumann conditions typically found in CFD problems.

We employ standard second-order centered-difference approximations to the differential operators of (1)

and (2) on a uniform grid of N = Nx ·Ny ·Nz points with hx = (bx − ax)/(Nx − 1), etc., in which bx − ax is

the length of the segment of ∂Ω in the x direction. For a Dirichlet problem such as being considered here,

this leads to a system of discrete equations of the form

pi−1,j,k − 2pi,j,k + pi+1,j,k

h2
x

+
pi,j−1,k − 2pi,j,k + pi,j+1,k

h2
y

+
pi,j,k−1 − 2pi,j,k + pi,j,k+1

h2
z

= fi,j,k , (3)

∀ i, j, k = 2, 3, . . . , Nx − 1, Ny − 1, Nz − 1, with boundary values prescribed (and therefore, formally, not

calculated) on ∂Ω.

For problems such as those embodied in (3), it is extremely simple (not much human time required)

to construct a successive overrelaxation (SOR) procedure formally corresponding to a linear fixed-point

iteration of the form

p(n+1) = Lωp(n) + kω , (4)

where p = (p
1,1,1

, . . . , p
i,j,k

, . . . , p
Nx,Ny,Nz

)T is the solution vector of discrete pressure values, and Lω is the

SOR iteration matrix (see [2] for an encyclopedic treatment). It is clear that once Lω has been constructed

(which is not actually done in a computational algorithm) only one matrix multiplication is required per

iteration, implying ∼O(N) arithmetic operations per iteration with a fairly small constant associated with

O. Moreover, it is known (see [2]) that the total number of iterations needed to achieve a specified level of

convergence scales as O(N1/3) provided the iteration parameter, ω, is the unique optimal one, ωb. Hence,

in this case total arithmetic is ∼ O(N1.333...). Furthermore, we note that for Laplace-Poisson/Dirichlet

problems, as considered in this abstract, ωb is known exactly and depends only on problem geometry and

discretization. We remark that although multigrid and various Krylov-subspace-based methods are often
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viewed as being more efficient (and the latter does not require specification of any parameters), they are much

more difficult to implement, and, particularly in the case of the latter of these, their asymptotic convergence

rates deteriorate significantly in applications to large problems of present-day interest (see [3]). Thus, we

believe, within the context of points i) and ii) of the preceding section, that the approach employed here,

basic linear fixed-point iteration, is worth considering—along with, of course, parallelization.

3. PARALLELIZATION

There are at least two distinct approaches to parallelization of relaxation methods in 3D, with various options

within each of these. Figure 1 provides a schematic of these in the context of the problem considered for

this abstract (solution of (3) on rectangular domains). Both parts of this figure represent forms of domain

decomposition strategies; but they are quite different. In part (a) of the figure we display an approach that

relies on 3-D subdomains while the method

Ω Ω

Ω
Ω

Ω . . . . . . . .

(a) (b)

1
3

2

4

2 ΩK

Ω1 Ωk

FIG. 1: Parallelization strategies for relaxation-like algorithms on regular domains.

shown in part (b) utilizes 2-D subdomains. We remark that the first of these will show some advantage for

SOR-related methods because their convergence rates are higher in 3-D. Moreover, this approach lends itself

to methods (extended to 3D) analogous to the 2-D techniques involving approximate Schur complements

studied in [4]. On the other hand, use of 2-D subdomains as depicted in part (b) is easily and naturally

coded in the context of OpenMP, as initially done herein. Furthermore, there can be some further advantages

to treatment of non-Dirichlet boundary conditions with this approach. Beyond this, we observe that the

3-D formulation will typically utilize fewer processors, which is possibly an advantage when using OpenMP

because this technique generally does not scale well beyond about 16 processors. We emphasize that in the

current abstract, only the approach implied by part (b) of the figure has been preliminarily investigated.

Further results from both types of methods will be presented at the conference and in the final paper.

4. RESULTS

Results presented here deal only with parallel speed ups. In particular, the main problem being solved is a

trivial one consisting of f ≡ 0 in Ω\∂Ω in (1), and p ≡ 1 on ∂Ω. It is easily seen that p ≡ 1 is the unique

exact solution. Thus, there is no truncation error associated with the discretization (3), permitting precise

assessment of iteration and rounding errors in the current parallel environment. At the same time, since

convergence rates, in general, depend only on the spectral radius of the iteration matrix, it is clear that for

any constant-coefficient problem with smooth f(x) and constant boundary values the method will behave

in the same way as indicated for the present simple problem.
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Calculations were performed on the unit cube, Ω ≡ [0, 1]×[0, 1]×[0, 1], and iterates were required to satisfy

a convergence tolerance ǫ = 10−8 applied to the max norm of the iteration error d
(n)
ijk ≡ p

(n+1)
ijk − p

(n)
ijk , where

n is the iteration counter. Discretizations of this domain consisted of 1013, 2013 and 3013 points. Figure 2

displays a convergence history for the 2013-point grid for optimal SOR (ωb = 1.969071) and the widely-used

ω = 1 corresponding to Gauss–Seidel iterations. It is clear from this figure that one should essentially never

employ ω = 1 for typical Poisson equation solutions, as emphasized in [3]. Indeed, this figure contains only

a small portion of the Gauss–Seidel convergence history (in order to somewhat more clearly display the

optimal SOR result). Iterations converged in 662 iterations (starting from p(0) ≡ 0) for optimal SOR and

required 43925 iterations for Gauss–Seidel (from the same initial guess).
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FIG. 2: Convergence history of relaxation methods.

Finally, Fig. 3 presents the main results from this preliminary study, viz., parallel speed ups using

OpenMP in a simple parallelization of the form implied by Fig. 1 (b). These calculations were performed on

an IBM P-Series shared-memory machine at the University of Kentucky Computing Center. Overall, this

computer consists of 128 IBM Power 5 processors and 1 TB of shared memory. We emphasize that the results

displayed here have been produced with no attempted optimization of OpenMP constructs—less than five

minutes of human time were expended in setting up parallelization of the two inner loops (corresponding to

the planes depicted in Fig. 1 (b)) of the three-loop evaluation of the SOR iteration formula.

It can be seen from Fig. 3 that one would not likely gain from using more than four processors for any

of the three problem sizes employed here. In fact, run time (wall clock) with four processors was actually

slightly longer than with two in the 1013 grid-point case, which showed slight super speed up, probably

due to improved cache utilization. The 2013-point calculation shows perfect speed up between one and two

processors, but little further speed up when four processors are used. Finally, for the 3013 grid point problem,

speed up between one and two processors is significantly inferior to that of the other two smaller problems,

again probably reflecting cache utilization—but this time the problem is sufficiently large that splitting it

between only two processors does not improve cache efficiency as it did for the smaller problems. For this

fairly large problem, employing four processors showed at least an observable, though not very significant,

speed up over that of two processors.

5. CONCLUSIONS/FUTURE WORK

The results of this preliminary study show that linear fixed-point iteration procedures in the form of optimal

SOR can be readily applied to obtain efficient solutions to 3-D Laplace/Dirichlet problems analogous to the

pressure Poisson equation of incompressible CFD in that they can be easily parallelized via OpenMP; but



403

21st International Conference on Parallel Computational Fluid Dynamics

0

1

3

4

5

2

0 1 2 3 4 5

201   grid3
301   grid3

101   grid3

ideal speed up

Number of processors

Pa
ra

lle
l s

pe
ed

 u
p

FIG. 3: Parallel speed ups for relaxation-like algorithms on rectangular domains.

speed ups are not especially good when more than two processors are utilized. Future work, to be reported

at the conference and in the formal proceedings, will involve more sophisticated OpenMP parallelizations,

more realistic pressure Poisson equation problems (e.g., pressure in a 3-D duct with inflow and outflow), and

assessment of OpenMP performance on an IBM cluster of Intel processors.
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REFERENCES

[1] C. Foias, O. Manley, R. Rosa and R. Temam (2001), Navier–Stokes Equations and Turbulence, Cam-

bridge University Press.

[2] D. M. Young (1971), Iterative Solution of Large Linear Systems, Academic Press, New York.

[3] J. M. McDonough, J. B. Polly and J. P. Strodtbeck (2009), Assessment of Iterative Methods for Large

Linear Systems, in progress.

[4] A. W. Schueller and J. M. McDonough (2002), A multilevel, parallel, domain decomposition, finite-

difference Poisson solver, in PARALLEL COMPUTATIONAL FLUID DYNAMICS, Practice and The-

ory, P. Wilders et al. (Eds.), Elsevier, Amsterdam, pp 315–322.



404

21st International Conference on Parallel Computational Fluid Dynamics

PARALLEL AND ADAPTIVE FINITE ELEMENT
CFD SIMULATIONS

TROND KVAMSDAL, KNUT M. OKSTAD, RUNAR HOLDAHL

AND BJARTE HÆGLAND†

SINTEF Information and Communication Technology
N-7465 Trondheim, Norway

Email: Trond.Kvamsdal@sintef.no, Knut.Morten.Okstad@sintef.no, Runar.Holdahl@sintef.no

†SINTEF Fisheries and Aquaculture
N-7465 Trondheim, Norway
Email: bjarteha@gmail.com

Key words: CFD simulations, Parallel grid refinement, Adaptive methods.

Summary. The implementation of an adaptive grid refinement procedure in a parallel
CFD simulation environment is discussed. The fluid solver, Vista-CFD, is based on the
software toolbox Diffpack. The adaptive procedure is demonstrated on a 2D benchmark
case, the Lid-driven cavity flow.

1 INTRODUCTION

In many engineering applications, the task of assessing hydrodynamic loading quanti-
ties on structures in or under water is a key challenge. This can be addressed either by
performing expensive physical tests, or through numerical simulation using Computational
Fluid Dynamics (CFD) based on the Finite Element Method (FEM) or similar discretiza-
tion approaches. However, numerical simulations—in terms of computer power—can be
expensive too, for sufficient accuracy and reliability on the results to be obtained.

Efficient simulations of 3D fluid flow around a submerged structure is only attainable
when distributing the computations on a parallel processing environment. Then we might
be able to add a sufficient amount of degrees of freedoms (DOFs) in order to resolve
boundary layers and similar small features that typically appear in the solution, with
satisfactory accuracy. Even higher accuracy and/or efficiency could be obtained if we
were able to distribute the huge amount of DOFs in an optimal way such that more
DOFs are devoted to the regions where the flow is the most complex, and less to the more
calm regions. Adaptive grid refinement based on a posteriori error estimates can be used
to obtain such an optimal distribution of the DOFs, more or less automatically.

The combination of parallel simulation on a distributed grid with an adaptive modifi-
cation of the grid based on the results is however a challenge by itself. One is then faced
with added complexities such as dynamic load re-balancing among the computing nodes,
solution transfer between different grids, as well as model data migration between the

1
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computer nodes, all at certain time steps within the time integration procedure.
The current study is a step towards such parallel adaptive CFD analyses. We base

our investigation on the in-house CFD-simulation package, Vista-CFD [1] which has been
developed at SINTEF and NTNU over the last decade through several PhD-projects.
Vista-CFD is again based on the object-oriented toolbox Diffpack [2, 3]. Herein, we
discuss some issues regarding the grid-refinement itself and the subsequent re-balancing
of the distributed grids which takes place before the simulation process can resume. We
demonstrate the ideas by simulation a simple 2D benchmark case, the well-known cavity
flow problem over a square domain.

2 THE VISTA CFD SIMULATION ENVIRONMENT

Vista-CFD is an object-oriented toolbox for coupled problems where solving the in-
compressible Navier–Stokes equations is a major part. By toolbox, we here mean that on
one hand it is a CFD-solver for a given set of problem types, but it is also a development
platform, a kind of a library of CFD modules or predefined software building blocks, to
build simulators for specific problems in a flexible and efficient way by the user directly.

Vista-CFD is a fully parallelized FE code where the incompressible Navier–Stokes
equation is solved using either mixed elements or equal order elements using operator
splitting (continuous projection method). Turbulence may be accounted for through the
Spalart-Allmaras model, which is implemented as a separate sub-problem solver that
interacts with the Navier–Stokes solver in a classical staggering solution procedure.

2.1 A posteriori error estimation for Navier–Stokes simulations

The basis for the adaptive grid-refinement performed in this work is a set of error
indicators computed for each element based on an error estimate. Recalling that the
incompressible Navier–Stokes equations may be written

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
(∆u) = 0 (1)

∇ · u = 0 (2)

where u and p are the the velocity and pressure for the fluid, respectively and Re is
the Reynolds number, we propose estimating the error of the associated finite element
solution (uh, ph) through

e∗Ω = u∗ − uhE(Ω) + ∇ · uhL2(Ω) (3)

where u∗ represents an improved version of uh. The first term on the right hand side of
Equation (3) is the energy norm of the Navier–Stokes equations, while the second term
measures the error in the divergence of the FE velocity field uh and is thus related to the
error in the pressure, ph.



406

21st International Conference on Parallel Computational Fluid Dynamics

The improved field is typically established by smoothing the gradient field, ∇uh. This
can be done through Zienkiewicz–Zhu-style patch recovery methods. However, in the
current study we rely on simple nodal averaging as the smoothing procedure.

3 ADAPTIVE REFINEMENT OF A DISTRIBUTED FE GRID

The basic principle for adaptive grid refinement is to obtain a computational grid with
equidistribution of the estimated error. Such a grid is optimal as it provides results of a
given accuracy with a minimum number of DOFs. We have chosen to refine a prescribed
portion of the elements, i.e., β ·N having the greatest element relative error.

The Diffpack toolbox is already equipped with methods for adaptive refinement of
simplex elements (triangles in 2D and tetrahedrons in 3D), for serial (non-parallel) appli-
cations. In this process, an element is refined by first adding a new node at the mid-point
of each of its three (or six in 3D) edges, and then replacing the old element by a set of
new elements connecting the existing and the new nodes. When refining one element in
this manner, one must also pay attention to the neighboring element(s) sharing the edges
that are subdivided, in order to avoid grids with ‘hanging nodes’.

However, since the grid now is distributed over a several processors, we are faced with
two additional challenges:

1. To maintain matching grids across neighboring sub-grids when refining the (possibly
overlapping) sub-grids locally on each processor.

2. Redistribution of the local grids after grid refinement, in order to maintain optimal
load balancing among the processors when continuing the flow simulation.

The first challenge is addressed by establishing a global list of element edges (identified
by their two global node numbers), containing all edges that are present on more than
one processor (in the following, we denote these edges as overlap edges . When an element
is marked for refinement, and one of its edges are among the overlap edges, a message is
sent to the corresponding neighbor processor telling it to refine that particular edge too.
This way, we ensure that all overlap edges are refined similarly on all processors. When
the edge-refinement is finished, we can continue creating the new, refined, elements using
the existing method for serial applications.

In order to re-balance the locally refined grids, we employ the ParMETIS library [4] to
compute a new distribution of the elements in the refined grid. ParMETIS takes as input
the adjacency graph of the local grid on each processor and outputs a list of processor
IDs for each element telling which processor each element rather should be on. Based on
this list, we communicate nodal coordinates and associated result field quantities among
the processors, such that each one is able to reestablish a local sub-grid and result fields,
according to the computed partitioning.

It should be noted that this process is somewhat more complicated than the construc-
tion of the initial sub-grids, since in the latter process we typically have a global grid
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established as a starting point, and now we also have to deal with result fields in addition
to the grid itself.

4 NUMERICAL RESULTS

The parallel adaptive procedure has been tested on a simple 2D case; the well-known
Cavity flow problem. It consists of a square domain, with wall conditions on three bound-
aries and a prescribed constant shear flow on the fourth (the upper horizontal boundary).

We have run this problem adaptively on 16 processors. The initial global grid contains
40× 40× 2 = 3200 triangular elements. The simulation was performed using a time step
size if dt = 0.005 [s] and doing grid refinements in an interval of 2.0 [s]. The initial grid
and the first five refinements are shown in Figure 1. The colors indicate the partitioning
at each refinement step.
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Figure 1. Sequence of adaptively refined grids for the Cavity problem.
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Abstract: To solve the flow field around complex geometries is one of the big difficulties for 
Computational Fluid Dynamics (CFD). To overcome this difficulty, we have already proposed 
a method. The method consists of two approaches. One is Building-Cube Method and the other 
is Immersed Boundary method.  To reduce the computation time, we adopt MRTR method. 
The reduction of computational time is obtained by MRTR method. 
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1. INTRODUCTION 

Computational Fluid Dynamics (CFD) has become an important tool for aerodynamics by the improvements of 
computer performance and CFD algorithm itself. However, the computational time of CFD continues to increase, 
while progress of computer has been made. One of the reasons is considered that application of CFD has become 
more complex. For example, CFD is employed to estimate aerodynamics performance for a complex shaped object. 
Concerning complex shape, however, the problem of grid generation still remains. It requires so much time and 
labor. To overcome the problems in meshing for complex-shaped object, we develop a method. The method consists 
of two approaches. One is Immersed Boundary method [1], and the other is Building-Cube Method (BCM) [2]. The 
basic idea of Immersed Boundary method is applied to cells in the vicinity of solid boundary, and Cartesian grid 
method is performed for other cells. The method has several advantages. For example, the method is suitable for 
parallel computation. A large part of computational time of the method is occupied by computation of Poisson's 
equation for pressure. To reduce the computation time, some latest Krylov subspace methods are implemented. In 
this paper, the performance improvement of the method is discussed. The parallel efficiency about the parallel 
computation will be discussed in the final paper.  

2. Numerical Methods

2.1 Computational Gird of BCM 

The computational grid used in this study is based on the Building-Cube Method. BCM grid generation follows two 
steps: the first is to generate ‘cube’ of various sizes to fill the flow field as shown in Fig. 1. The second step is to 
generate Cartesian grid in each cube (Fig. 2). Two cells overlap between adjacent cubes to exchange the flow 
information at the boundaries.

 

 

 

 

 

Fig. 1: Cube boundary around airfoil.        Fig. 2: Cartesian mesh around airfoil. 
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2.2 Flow Simulation 

In this study, mass conservative equation and the Navier-Stokes equations governing incompressible viscous flow 
are used for solving flow field. It can be written in the Cartesian coordinate system (x, y, z) as 
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where u, v, w, P,ν and ρ are Cartesian components of the velocity vector in the x, y, z directions, pressure, dynamic 
viscosity and density, respectively. Specifications of the flow solver in this study are as follows. 

•Discretization  : FVM 

•Convection term   : Hybrid Method. (1  upwind,  2nd order central)  

•Coupling scheme : Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 

2.3 Parallelization 

Equal number of cubes is assigned to each CPU using Message Passing Interface (MPI) library in order to achieve 
optimal parallel performance. The flowchart of the computation procedure is shown in Fig. 3. 
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Solve U

Solve V

Solve W

Solve P

Convergence

END
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Fig. 3: Flow chart of flow solver (Left: Overall, Right: In each cube).

2.3 Krylov subspace method 

In order to efficiently solve the linear equation system obtained from the discretization of Poisson’s equation, the 
following Krylov subspace methods are considered as candidates. 

・Minimal Residual Method based on the Three-term recurrence formula of CG type (MRTR) [3] 
・Conjugate Residual Squared Method (CRS) [4] 
・Conjugate Gradient Squared method (CGS) [5] 
・Bi-Conjugate Gradient Stabilized Method (BiCGSTAB) [6] 
・Bi-Conjugate Residual Stabilized Method (BiCRSTAB) [4] 
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3.  Computational Result 

To evaluate the performance of the above Krylov subspace methods, a series of numerical experiment was carried 
out for the following two types of model problem, (a) and (b). The test problem is defined as 

,bAx =                                                                          (5) 

where A and b stand for an n-by-n matrix and an nth order-vector , respectively.  

 

(a) Symmetrical dense matrix: 
 Coefficient matrix A is defined by
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and right-hand-side vector b is calculated by

,AUb =                                                                              (7) 

where U is defined by

].1,2,1,0[ −= NU L                                                         (8) 

The numerical computations were carried out for N=500, 1000. The convergence history (L2-norm of residual as a 
function of number of iteration) for MRTR, CRS, CGS, BiCGTAB, BiCRSTAB is shown in Fig. 4. Despite the size 
of matrix, each method shows similar trend. Specifically, characteristic of MRTR convergence history is favorable, 
because it doesn’t vibrate. 

 

 

 

 

 

 

Fig. 4: Convergence history for MRTR, CGS, CRS, BiCGTAB, BiCRSTAB, with symmetric dense matrix 
(N=500(left), N=1000 (right)). 

(b) Toeplitz matrix 
Coefficient matrix A is defined by
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and right-hand-side vector b is defined by
].1,1,1,1[ L=b                                                                ( 1 0 )

The numerical computations were carried out for N=500, 1000 with γ=1.2. The convergence history for MRTR, 
CRS, CGS, BiCGTAB, BiCRSTAB is shown in Fig. 5. The convergence of each method except for MRTR depends 
on the size of matrix. 

 

 

 

 

 

 

 

Fig 5: Convergence history for MRTR, CGS, CRS, BiCGTAB,  BiCRSTAB,  
with Toeplitz matrix (N=500(left), N=1000 (right)). 

To evaluate the performance of the method, flow simulation around sphere was carried out. Computational 
conditions are shown in Table 1. The surface geometry and computational grid is shown in Fig. 6. One of the 
examples for computed flow field is shown Fig.7. Large eddy in the wake of sphere was captured in this simulation. 
This simulation was performed on NEC SX-8. This computer has a vector CPU with 64 GB main memories and 8 
processors in each node. Good parallel efficiency is obtained as shown in Fig. 8. 

In the final paper, the test result with large number of CPU and convergence history of MRTR method will be 
discussed. 

Table 1: Computational conditions. 

Fig 6: Computational grid around sphere. 

 

Reynolds Number

Number of Cube

Number of Cell in a cube

Total number of cell

100

405

16×16×16

1,658,880
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Fig 7: Computed stream line and pressure 

contour. (Still under calculation) Fig 8: Parallel efficiency on NEC SX-8 
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    Abstract: In this paper, we employ a genetic algorithm (GA) for shape optimization of 

low Reynolds number airfoils for generating maximum lift for Unmanned-Air-Vehicle 
(UAV) applications. The computational efficiency of GA is significantly enhanced with an 
artificial neural network (ANN).  The commercially available software FLUENT is used 
for calculation of the flow field. It is shown that the combined GA/ANN optimization 
technique is capable of accurately and efficiently finding globally optimal airfoils. 
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1. INTRODUCTION 

 
        Design optimization is a subject of great interest in the aerospace industry since optimization can lead to 
lighter, faster, and more fuel-efficient aircraft. Due to the highly nonlinear nature of the Navier-Stokes 
equations, currently almost all practical aerodynamics problems are solved iteratively using the specialized 
computational fluid dynamics (CFD) software. It is now generally recognized that the traditional gradient-
based optimization techniques are difficult to apply and are inefficient when used in conjunction with the 
Navier-Stokes solvers. Therefore in recent years adjoint methods from control theory [1] and stochastic 
techniques such as genetic algorithms [2] are increasingly being employed for aerodynamic shape 
optimization. 
        In recent years there has been emphasis on the study of Unmanned-Air-Vehicles (UAV) and Micro-Air-
Vehicles (MAV). The flow over this class of vehicles is at low Reynolds numbers (< 500,000) in contrast to 
the Reynolds number of commercial transport aircraft which is in the range of 20 to 40 million. MAV in 
particular operate on the scale of insect flight (approximately 1.5 to 150 cm wingspan) and thus have very 
different aerodynamic properties than the typical commercial aircraft. In the commercial aircraft, at high 
Reynolds numbers, viscous effects are confined to the thin turbulent boundary layer region, and the fluid 
outside the boundary layer can be accurately approximated as inviscid.  In low Reynolds number flow 
(approximately between Reynolds numbers of 10e3 and 10e5), viscous effects are no longer confined to the 
thin boundary layer region; they dominate the entire flow field. Therefore the solution of full Navier-Stokes 
equations becomes a necessity for accurate characterization of the flow fields of UAV and MAV.  
        In this paper, we describe the application of a genetic algorithm (GA) to optimize low Reynolds number 
airfoil design.  However, since CFD evaluation is computationally expensive and since the GA may require 
over a thousand evaluations to reach convergence, we additionally build on the work of Carlo Poloni [3] and 
train an artificial neural network (ANN) online [4] during GA optimization to eventually replace the expensive 
CFD program for design evaluation. Using this technique, we obtain globally optimal low Reynolds number 
airfoils over a range of angles-of-attack. The combined GA/ANN is parallelized to run on a SGI Origin 2000 
multi-Processor platform. 
 

2. NUMERICAL ALGORITHM 
 

        The details of the GA and ANN algorithms are not given here. They are given in References [2] and [4] 
respectively. Here we briefly describe the implementation of GA/ANN algorithm for airfoil optimization.  
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2.1 Joukowski Transformation for Airfoil Parameterization 

       The Joukowski transformation [5] provides an easy mechanism for describing an airfoil by a small number 
of geometric parameters. It allows us to define an airfoil in the standard coordinate system by transforming a 
circle in a conformal plane.  Let us denote the conformal coordinate system as the ζ-plane with ξ and η axes. 
The transformation then maps a circle centered in the second quadrant that intersects the positive ξ-axis at 
point (c, 0) to an airfoil in the z-plane by the following functions: 
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This transformation has several desired properties.  If the center of the circle is in the second quadrant and the 
circle intersects the positive ξ-axis, then the airfoil will have a sharp trailing edge.  The transformation also 
ensures that the camber line of the airfoil will start and end on the x-axis, removing the need for any further 
translations or transformations. Figure 1 illustrates the application of the Joukowski Transformation. 

 

  
 

Figure 1:  Illustration of the Joukowski Transformation 
 

The thickness of the airfoil t is given by the expression: 
 
 

where x1 and x2 are ξ and η coordinates of the center of the circle, and x3 is the radius of the circle.

2.2 Algorithm Implementation 
 

       In this section we briefly describe the computational setup and the details of the algorithm 
implementation. Figure 2 schematically illustrates how the GA interfaces with the external mesh generation 
software GAMBIT [6]  and  CFD flow solver  FLUENT [7]. A GA individual is represented by an airfoil 
geometry data file, which is passed to the meshing program Gambit. Gambit is used to create a two-
dimensional structured or unstructured mesh, which is then passed as input to the CFD flow solver FLUENT 
for computation of the flow field. FLUENT is used iteratively to solve for the coefficient of lift Cl and the 
coefficient of drag Cd.   Some combination of these values (either Cl or Cl/Cd) is taken as the quantity of 
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interest (objective value) to determine the fitness of the airfoil. The algorithm shown in Figure 2 continues 
until the convergence in the objective value is achieved. Since a single FLUENT calculation may take as long 
as thirty minutes to complete on a SGI workstation and since the GA may require over a thousand calculations, 
we train an ANN online to reduce the runtime. At each step, the ANN’s predicted objective value is compared 
against FLUENT’s true objective value, and when the two become close enough to reliably trust the ANN (in 
practice, this occurs after as few as 200 evaluations), the ANN is used in place of FLUENT for evaluation.   
 

 
                                  Figure 2:  Illustration of information flow in GA process 
 

3. RESULTS AND DISCUSSION 
 

       The Joukowski transformation, described in section 2.1, is used to parameterize an airfoil with three 
parameters: ξ, η, and r. We scale all airfoils to have a chord length of unity and constrain our parameters 
according to equations (3) given below. These constraints ensure that the airfoils considered are all centered in 
the second quadrant of the conformal plane, intersect the positive ξ-axis, and have a thickness ratio (maximum 
thickness to chord length) less than 20%. The constraint on thickness is included to eliminate “fat airfoils.” 
 
 35.010 −≤≤− ξ  , 100 ≤≤η ,                                                             (3)                                                 
                                                                                                                                                                                                        
We use a generation size of 10 individuals with a mutation rate of 3% and a natural selection rate of 50% with 
no culling tolerance; that is, we make no attempt to remove similar airfoils and simply remove the lowest 50% 
of each generation. The selected individuals are then replaced with an extrapolation-based crossover scheme.    
Since the objective value can take both positive and negative values, roulette wheel sampling cannot easily be 
used for selecting reproducing individuals; so, reproduction is done by randomly selecting two individuals.  
Note, however, that the fittest individuals are still most likely to reproduce because the top 50% of each 
generation perpetuates to the next generation (and thus will have another chance to reproduce).  The offspring 
individual is then obtained by stepping a random amount in the direction of the fitter parent according to 
equation (4) below. 
                    ( ) ( ) ( ) 21221 1,0, xxxxx +−⋅= randcrossover                             (4) 
Convergence is determined when the fitness of all individuals in a generation differs by no more than 0.001 
(which usually occurs between 150 and 250 generations) or when 250 generations have passed. This second 
constraint on convergence is applied to prevent the algorithm from running for unreasonable amounts of time. 
           
          In this study, our primary objective is to generate optimized low Reynolds number airfoils that 
maximize Cl at 0° and 2° angles-of-attack.  We employ a first-order accurate Navier-Stokes solver on an 
adaptive mesh with a standard pressure solver in FLUENT. Figure 3 shows the “evolution” of an optimized 
airfoil using the genetic algorithm at Re = 100,000 and α = 2°.  In this figure, we plot the best individual 
fitness against the number of airfoil evaluations.  This figure illustrates the convergence history of the solution 
during the first 200 airfoil evaluations, which are done using FLUENT. After this point, the ANN is 
responsible for evaluating the airfoil fitness, and minor modifications continue according to GA until the 
solution is converged.  At completion, the optimal airfoil, as predicted by the ANN, is then evaluated with 
FLUENT to determine its true objective value. Table 1 and Figure 4 summarize the results obtained for 

GA 
Gambit Fluent

ANN

Mesh
Airfoil

∆ Objective value estimation 

True objective value 

20.0≤
c
t



417

21st International Conference on Parallel Computational Fluid Dynamics

maximizing Cl using Fluent’s first-order accurate Navier-Stokes solver on an adaptive fine mesh. The data in 
the table shows, as one would expect, that as α increases so does the value of maximum Cl.  The Cd values for 
these optimized airfoils also increases with angle-of-attack.  The drag of these airfoils is quite large because 
the GA has maximized lift without any consideration for drag. 

 
Table 1: Results for airfoils optimized for Cl at Re = 100,000 and α = 0°, 2° 

α      Objective 
Order of 
Solution        Cl        Cd       Cl/Cd

Objective        
Value

0 Cl 1st Order      2.352     0.19007      12.374      2.352 
2 Cl 1st Order      3.049     0.18854      16.172      3.049 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Convergence history of a Cl -optimized airfoil at Re = 100,000 and α = 2° 
 

Figure 4 shows the comparison of the shapes of two airfoils as α increases from 0° to 2°, the optimal airfoil 
thickness decreases from 11.5% to 10.2% with increase in α and the airfoil becomes more cambered.         

 
                                      Figure 4: Comparison of the optimized shape of the two airfoils  
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       Figure 5 shows a plot of velocity vectors around the optimized airfoil in Figure 4 at Re = 100,000 and α = 
2° while Figure 6 shows the pressure distribution on the airfoil. Neither the velocity vectors nor the pressure 
distributions in these figures indicate separation bubbles on either the upper or lower surfaces of the airfoils.     
It is notable that our optimized airfoils do not show flow separation – with or without reattachment. While it is 
not surprising that airfoils with non-separated boundary layers should outperform those with separation 
bubbles, it is not obvious that in the flow regime studied, separation could be avoided entirely, as we have seen 
in our computations.   
                                           

 
 Figure 5: Velocity vectors over of a Cl-optimized          Figure 6: Pressure distribution on Cl-optimized at  
  airfoil at Re = 100,000 and α = 2°                                  Re = 100,000 and α = 2°                              
 

4. CONCLUSIONS 
 
In this paper, we have employed a genetic algorithm (GA) for shape optimization of low Reynolds number 
airfoils for generating maximum lift for Unmanned-Air-Vehicle (UAV) applications. The computational 
efficiency of GA is significantly enhanced with an artificial neural network (ANN).  The commercially 
available software FLUENT is used for calculation of the flow field. It is shown that the combined GA/ANN 
optimization technique is capable of accurately and efficiently finding globally optimal airfoils. Efforts are 
currently underway to parallelize the algorithm. A straightforward implementation on 4-processors shows about 
90% efficiency. 
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 Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks 
is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized 
spacecraft, this energy dissipation can cause a growth in the spacecrafts’ nutation (wobble) that 
may lead to disastrous consequences for the mission.  Even in non-spinning spacecraft, 
coupling between the spacecraft or upper stage flight control system and an unanticipated slosh 
resonance can result in catastrophe.  By using a Computational Fluid Dynamics (CFD) solver 
such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be 
tested by comparing its results to an experimental test case. Such a model will allow for the 
variation of many different parameters such as fluid viscosity and gravitational field, yielding a 
deeper understanding of spacecraft slosh dynamics. 
 Liquid Propellant, Slosh, Frequency, Damping Rate 

 

1. INTRODUCTION 

Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the 
design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in 
the spacecrafts’ nutation (wobble) that may lead to disastrous consequences for the mission [1].  Even in non-
spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh 
resonance can result in catastrophe [2].  By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a 
model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an 
experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity 
and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics.    

The information acquired from the CFD model will be compared to several test scenarios that have been studied in 
the laboratory in order to verify the results. Once the results have been experimentally verified and there is 
significant confidence in the values calculated by the CFD technique, it will be applied to various other scenarios 
such as variable gravitational conditions, larger tanks, different shaped tanks, and more viscous liquids. Ultimately, 
the model will be modified to include tanks with propellant management devices such as diaphragms and baffles.  

2. EXPERIMENTAL SETUP 

Experimental data for this research was acquired at Embry Riddle Aeronautical University. The fuel slosh research 
laboratory is equipped with a state-of-the-art linear actuator and data acquisition system. An eight inch in diameter 
spherical test tank is suspended from a frame by cables and attached to a linear actuator as seen in Figure 1. A force 
transducer placed at the interface between the linear actuator and the fuel tank will measure the forces induced by 
the fuel slosh and transmit the data to a computer for analysis [3]. 

The effect of energy dissipation in sloshing fuel is best illustrated by exciting the tank with a “sudden push” and 
quickly bringing it to a stop. This causes the fluid to begin sloshing and slowly damp out the oscillations. The 
damping effect of the fluid is caused by the fact that the fluid in the tank is not inviscid. The viscous nature of the 
fluid causes an energy dissipation that will eventually bring the fluid to rest. The maximum amplitude of the reaction 
force decreases over time. This damping is one of the most important effects that the CFD model must replicate in 
order to validate the fuel slosh behavior. Another quantity of interest is the frequency at which the slosh oscillations 
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are occurring. This is useful information that may be used to prevent frequency coupling and inducing resonance in 
the fuel tank system. 

 

Fig. 1: . 

3. CFD MODEL 

The computational domain used in this study consists of the experimental tank complete with the opening at the top. 
The tank used is an eight inch spherical tank with a three inch hole at the top that is used for filling. As seen in 
Figure 2, most of the cells are located at the tank walls. This high resolution at the walls is necessary for capturing 
the viscous effects that cause the damping of the fluid oscillations. The fully unstructured grid was generated using 
Gridgen and later modified by Fluent’s polyhedral mesh conversion. This polyhedral mesh conversion takes a fully 
tetrahedral mesh and combines adjoining tetrahedrals to form polyhedrals. The technique reduces the total number 
of cells without adversely affecting the solution. In this particular problem, the cell number was reduced from 1.2 
million to 431,000 therefore greatly reducing the computation time [4]. 

 
Fig. 2: 

While solving the Navier-Stokes equations in a CFD calculation is common practice, there is another issued that 
must be dealt with in this model. The issue that makes this study somewhat more difficult than standard CFD 
models is that fact that the problem includes two different fluids. When the liquid propellant sloshes around inside 
the tank, it naturally displaces the air. In order to track the position, shape and velocity of the interface between the 
liquid propellant and the air, it is necessary to use what is called the volume of fluid (VOF) method [5]. 

The volume of fluid method developed by Hirt and Nichols introduces a new variable whose value is to be stored at 
the cell center along with the rest of the solution. This new variable is referred to as the volume fraction. This special 
volume fraction variable is used as a flag to indicate whether the cell contains fluid or air. For example, if a cell is 
completely filled with fluid, it will be given a value of unity. On the other hand, if a cell is found in an area that 
contains air (no fluid) the value for the volume fraction will be zero. If a cell is found to have a volume fraction 
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value between zero and one, then the cell is said to contain a free surface (Hirt and Nichols). In order to track the 
value for this volume fraction throughout the entire field as a function of time, Hirt and Nichols define a function  
that is to be conserved [5]. 
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This function  represents the volume fraction at every point in the flow. Notice it is a simple conservation equation 
much like the continuity equation. The volume fraction at every “node” in a computational domain will either be 0 
or 1, but the volume fraction at a cell center can be 0 ≤ ≤ 1. This is due to the fact that the value of  is calculated 
for the cell center as the average value of its neighboring nodes. For example, as seen in Fig. 3, the two nodes that 
are not fully submerged in the fluid (green) have a volume fraction of 0 and the two nodes that are fully submerged 
in the fluid (blue) have a volume fraction of 1. In this two dimensional simplified case, volume fraction at the cell 
center will be calculated to be 0.5.  This concept can be applied to any cell with any number of nodes [5]. 

Fig. 3: 

After calculating the volume fraction for each cell center, the next issue that arises is the orientation of the free 
surface with respect to the cell itself. There are many ways to calculate the orientation of this free surface within the 
cell, but the most common, and the way it is implemented in this study is by using the geometric reconstruct method. 
In this method, the free surface is approximated as a line whose volume beneath it is equal to the volume fraction 
multiplied by the total volume of the cell. The slope of this line is based on the magnitude of the gradient of  
(volume fraction) at the faces. This slope will define the shape of the free surface (linear approximation) within the 
cell. This information allows the solver to track the free surface of the liquid as a function of time [5].  

4. PARALLEL PROCESSING 

All computations needed for this research were done using the Embry-Riddle University computer cluster. A total of 
6 Intel Opteron  processors were employed. Since ANSYS Fluent was used as the solver for this study, its automatic 
partitioning function was utilized. This automatic partitioning made the parallel computing process quite simple 
saving the researcher a great deal of time.  

Parallel computing using ANSYS Fluent makes use of multiple processors by partitioning the domain and data into 
different sections. Each of these sections is assigned to a single compute node or processor. As each processor is 
running the computations for their assigned partition it is also communicating with all of the other processors to 
exchange boundary conditions and interface values. This processor communication process is orchestrated by an 
ANSYS Fluent utility named cortex. This cortex utility allows fluent to seamlessly integrate the ANSYS Fluent 
graphical user interface with the complex operations of parallel processing with minimum input from the user. This 
study is a great testament to the user friendly nature of ANSYS Fluent [6].  

5. RESULTS 

The damping rate is defined as the rate at which successive peaks in the oscillations diminish in an exponential fit to 
the data over time. Plotted in Figure 4, are the peaks of the positive oscillations as recorded by the force transducer 
in the experimental setup. Recall that the tank was given an initial “push” and then allowed to dissipate the 
oscillations. This peak data, is normalized (to cross the axis at y=1) and then fitted to an exponential curve. This 
yields a damping rate of 0.0656 for the experimental data shown in Figure 4 [7]. The damping rate was calculated 
twice for the same tank but using liquids of different viscosities. The two liquids used in the tests were water and 
glycerin. These two fluids represent a wide range of viscosities that common liquid propellants may fall under.  
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Fig 4:  
When the tank is given an initial excitation, the liquid in the tank begins to oscillate at its natural frequency. This 
natural frequency is defined by the gravitational force, fluid fill level, and tank shape. It is very important to be able 
to predict this natural frequency. If the spacecraft begins to oscillate at this frequency, the forces caused by the 
sloshing liquid can resonate and greatly amplify causing problems with the control system. The results are outlined 
in the following table (Table 1). 

Table 1: 


  
  
  
  
  


  
  
  
  

 
Besides accurately predicting both the damping rate and natural frequency, the CFD model can yield valuable 
information about the fluid as it sloshes. As seen in Figure 5, this model can predict characteristics such as the shape 
of the free surface and the velocity vector field of the fluid as a function of time. This valuable information helps to 
visualize the fluid motion, and gain a deeper understanding of the physics behind spacecraft propellant slosh [7]. 

 

 

Fig 5: 



423

21st International Conference on Parallel Computational Fluid Dynamics

 
 

 

6. CONCLUSIONS 

This CFD model was successful for simulating the small amplitude slosh of free surface tanks. Further research will 
be aimed at creating models for more complex environments such as tanks fitted with propellant management 
devices (PMD’s) like baffles and diaphragms. These models will eventually allow the simulation of full scale flight 
tanks.  

Thanks to the power of Computational Fluid Dynamics, an accurate model of spacecraft fuel slosh can be created. 
This model allows for the prediction of many different parameters that are useful for the completion of any space 
mission. Besides being an accurate source of data, it allows for a deeper look into the dynamics of sloshing fuel.  All 
of this can be achieved without the cost of building an expensive experimental setup. CFD models like these are the 
future of fluid studies 

REFERENCES 

[1]  Hubert, C., , Hubert Astronautics, 2nd Edition  
August 2008. 

[2]  Musk, Elon. "Updates Archive." SpaceX. 27 March 2007. Space Exploration Technologies. 3 Mar 2009 
<http://www.spacex.com/updates_archive.php?page=0107-0707>.  

[3]  Schlee, K. Gangadharan, S.N., Ristow, J.,       
 41st AIAA Joint Propulsion Conference, 2005. 

[4]  Gridgen 2007-2008 Pointwise, Inc  
[5]  Hirt, C.W. and Nichols, B.D.,           , 

Journal of Computational Physics 39, 201, 1981. 
[6] FLUENT Software Version 6.2.16, © 2004 Fluent Inc.  
[7] Marsell, B. Gangadharan, S.N. Chatman, Y. et al.  

47th AIAA Aerospace Sciences Meeting, 2009.  
 
 

 



424

21st International Conference on Parallel Computational Fluid Dynamics

 
 

 

Realistic Magnetohydrodynamics Simulations  
of Turbulent Convection on the Sun 

 
Irina N. Kitiashvili*, Alexander G. Kosovichev**, Alan A. Wray***, Nagi N. Mansour**** 

*Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA 
(Tel: 650-723-9596; e-mail: irinasun@stanford.edu) 

**W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA 
(e-mail: sasha@sun.stanford.edu) 

*** NASA Ames Research Center, Moffett Field, CA 94035, USA 
(e-mail: wray@nas.nasa.gov) 

**** NASA Ames Research Center, Moffett Field, CA 94035, USA 
(e-mail: nagi.n.mansour@nasa.gov) 

Abstract: Realistic numerical simulations of the Sun's fluid dynamics and magnetism are very 
important for the analysis and interpretation of observational data from space missions, such as 
the Solar and Heliospheric Observatory (ESA/NASA), Solar-B/Hinode (Japan/NASA), and the 
Solar Dynamics Observatory (NASA), and for developing physics-based methods for making 
space weather forecasts that are essential for future space exploration, both manned and 
unmanned. We have developed a highly efficient parallel radiative magnetohydrodynamics 
code for 3D simulations of the Sun's turbulent convection in magnetic field regions. The code 
includes all essential physics from first principles, and various subgrid-scale turbulence 
models. The implementation of this code on the NASA/Ames supercomputer system Columbia 
shows very efficient, nearly 100% scaling on a large number of processors. The parallelization 
is done purely with standard MPI methods; no shared-memory techniques were used or 
needed. The code has been applied for realistic simulations of solar convection and oscillation 
in the presence of strong inclined magnetic fields. The results reveal very interesting dynamics 
and self-organization processes, reproducing several phenomena observed in solar active 
regions, and provide an explanation for the Evershed effect in sunspots. 
Keywords: Realistic MHD simulation, subgrid scale turbulence models, solar convection, 
Evershed effect, solar oscillations. 

 

1. INTRODUCTION 

Realistic numerical simulations of the Sun's fluid dynamics and magnetism are very important for the analysis and 
interpretation of observational data from space missions, such as the Solar and Heliospheric Observatory 
(ESA/NASA), Solar-B/Hinode (Japan/NASA), and the Solar Dynamics Observatory (NASA), and for developing 
physics-based methods for making space-weather forecasts that are essential for future space exploration, both 
manned and unmanned. Large parallel supercomputers, especially those developed in the last few years, have 
allowed large-scale realistic simulations of solar magnetohydrodynamic convection, and these in turn have greatly 
increased our knowledge of the structure and dynamics of multi-scale solar convection. A characteristic feature of 
simulations of this type is that they include all essential physics from first principles, but they do rely on subgrid 
scale models of turbulence. Jacoutot et al. [1] investigated various turbulence models and showed that the dynamic 
model of Germano-Moin [3] provides the best agreement with solar observations. These simulations have been used 
for testing both the local-correlation-tracking and time-distance helioseismology methods for supergranulation 
flows. 

Realistic numerical simulations pioneered by Stein and Nordlund [4] have provided important insights into the 
structure and dynamics of solar convection and the excitation mechanism of oscillations on the Sun and solar-type 
stars. These simulations showed the creation of acoustic modes by turbulent pressure and nonadiabatic pressure 
fluctuations [5]. In this report, we describe a highly efficient parallel radiative magnetohydrodynamics code and 
simulation results of the Sun's turbulent convection in magnetic field regions. In particular, we investigate the 
dynamics of convection in regions of a strong, highly inclined magnetic field. The simulation results have provided 
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important results for interpretation of high-resolution data from the Solar Optical Telescope of the Hinode space 
mission. 

2. RADIATIVE MHD SIMULATION CODE ("SOLARBOX") 

The MHD simulation code ("SolarBox") was developed by A. Wray (NASA Ames Research Center). This code 
allows including various subgrid-scale turbulence models. The code has been carefully tested and has been 
previously used for studying how various turbulence models affect the excitation of solar oscillations by turbulent 
convection in the upper convection zone [1, 2]. The implementation of this code on the NASA/Ames supercomputer 
system Columbia shows very efficient, nearly 100% scaling on a large number of processors (Fig. 1). The 
parallelization is done purely with standard MPI methods; no shared-memory techniques were used or needed. 

 

Fig. 1: Scaling results on Columbia supercomputer for SolarBox MPI code for 500 3 mesh points (solid curve).  
The dashed line shows linear scaling. 

The code solves the full compressible MHD conservation equations for mass, momentum, energy, and magnetic 
flux; in tensor notation: 
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where 
22 22 ( 3) 2ij S ij k k ij C ijC S S u C Sτ δ,= − Δ − / + Δ / 3δ . 

Because of the extremely high Reynolds numbers present, direct numerical simulations (DNS) of turbulent motions 
are not achievable in stellar magnetohydrodynamics. Thus, accurate subgrid-scale models, to describe turbulent 
stresses in the magnetized plasma, are needed to carry out LES (Large Eddy Simulations). We have carried out 
numerical experiments to evaluate the performance of different magnetic sub-filter models by means of a priori tests 
using optimal estimation theory, and their verification with a posteriori tests was done using direct numerical 
simulations (DNS). 
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3. EFFECTS OF MAGNETIC FIELD ON TURBULENT CONVECTION 

In addition to simulations with initially vertical magnetic fields, we have carried out simulations of solar convection 
in the presence of inclined magnetic fields. The mean magnetic field inclination is maintained by the top and bottom 
boundary conditions along with the total magnetic flux. The results presented in Figure 2 show that, in the presence 
of an inclined field, the magnetoconvection pattern is moving in the direction of inclination similar to the running 
convective waves. 

 

Fig. 2: Temperature variations (color image) and velocity field in the subsurface convective layer of the Sun, 
showing the filamentary structure of magnetoconvection and formation of shearing flows caused by traveling 

convective waves; initial 1200 G magnetic field inclined by 850. 

In the realistic 3D case the magnetoconvection develops filamentary structures, and a rapidly moving convection 
pattern appears (Fig. 2).  

4. CONCLUSIONS 

We have developed and implemented very efficient methods and parallel codes for magnetohydrodynamic 
simulations of turbulent convection in the Sun. The realistic simulations of solar convection and oscillation in the 
presence of magnetic fields reveal very interesting dynamics and self-organization processes, reproducing several 
phenomena observed in solar active regions. In particular, the results confirm that the spatial scale of granulation 
substantially decreases with the magnetic field strength. Magnetic field is swept into the intergranular lanes, and the 
vertical downdraft motions in these lanes are suppressed. This results in a decrease in the excitation power. The 
oscillation power in the presence of magnetic field is shifted towards higher frequencies, also increasing the 
amplitude of pseudo-modes above the acoustic cut-off frequency. At moderate field strength of ~ 600 G the power 
of the high-frequency oscillations reaches a maximum. This corresponds to the phenomenon of ''acoustic halo" 
observed in the range of 5 - 7 mHz at the boundaries of active regions. In the presence of inclined magnetic field the 
solar convection develops filamentary structures with flows concentrated along the magnetic filaments, and also 
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exhibits the behavior of running magnetoconvective waves, resembling recent observations of the sunspot penumbra 
dynamics from the Hinode space mission. 
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Abstract: This work examines the parallel scalability characteristics of commercial CFD 

software FLUENT and STAR-CD for up to 256 processing cores, and research CFD software 

CDP from Stanford University for up to 512 cores – for transient CFD simulations that are 

heavy in IO relative to numerical operations. In three independent studies conducted with 

engineering contributions from the University of Cambridge, Intel, SGI, and Panasas, each 

Linux HPC environment combined Intel Xeon clusters with a Panasas parallel file system and 

shared storage. The motivation for these studies was to quantify the performance and 

scalability benefits of parallel IO in CFD software on a parallel file system (PanFS) verses 

conventional serial NFS file systems for a variety of transient CFD cases. 

Keywords: HPC, Transient CFD, Parallel Scalability Linux Clusters, Parallel File Systems, IO. 

 

1. INTRODUCTION 

CFD parallel efficiency and simulation turn-around times continue to be an important factor behind engineering and 

scientific decisions to develop models at higher fidelity. Most parallel CFD simulations use scalable Linux clusters 

for their demanding HPC requirements, but for certain classes of CFD models, data IO can severely degrade overall 

job scalability and limit CFD effectiveness. As CFD model sizes grow and the number of processing cores are 

increased for a single simulation, it becomes critical for each thread on each core to perform IO operations in 

parallel, rather than rely on the master compute thread to collect and operate on each IO process in serial.  

Examples of IO demanding simulations include ~100-million-cell steady state models on a large ( > 64) number of 

cores, and moderate-sized and moderately parallel transient CFD models that require frequent and multiple solution 

files writes in order to collect time history results for subsequent post-processing. In the case of frequent time 

history files being written in a serial process, any parallel benefit from a CFD solver is soon overwhelmed as more 

processing cores (and therefore more serial IO threads) are added to a simulation. 

For this reason, commercial CFD software developers such as ANSYS and CD-adapco, and research CFD 

developers such as Stanford University, offer parallel IO schemes that scale with the CFD solvers in each, but just 

as parallel solvers require scalable clusters, parallel IO requires that the cluster be configured with a parallel file 

system and shared storage, and sometimes referred to as parallel network attached storage (NAS). Parallel NAS 

capability scales IO to overcome IO bottlenecks, enabling IO-bound CFD to scale to its full potential. 
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2. PARALLEL FILE SYSTEMS AND SHARED STORAGE 

A new class of parallel file system and shared storage technology has developed that scales IO in order to extend 

overall scalability of CFD simulations on clusters. For most implementations, entirely new storage architectures 

were introduced that combine key advantages of legacy shared storage systems, yet eliminate the drawbacks that 

have made them unsuitable for large distributed cluster deployments. Parallel NAS can achieve both the high-

performance benefits of direct access to disk, as well as data-sharing benefits of files and metadata that HPC clusters 

require for CFD scalability.  

One implementation from Panasas offers a parallel NAS technology with an object-based storage architecture that 

can eliminate serial IO bottlenecks. Object-based storage enables two primary technological breakthroughs vs. 

conventional block-based storage. First, since an object contains a combination of user data and metadata attributes, 

the object architecture is able to offload IO directly to the storage device instead of going through a central file 

server to deliver parallel IO capability. That is, just as a cluster spreads the work evenly across compute nodes, the 

object-based storage architecture allows data to be spread across objects for parallel access directly from disk. 

Secondly, since each object has metadata attributes in addition to user-data, the object can be managed intelligently 

within large shared volumes under a single namespace. 

Object-based storage architectures provide virtually unlimited growth in capacity and bandwidth, making them well-

suited for handling CFD run-time IO operations and large files for post-processing and data management. With 

object-based storage, the cluster has parallel and direct access to all data spread across the shared storage, meaning a 

large volume of data can be accessed in one simple step by the cluster for computation and visualization to improve 

speed in the movement of data between storage and other tasks in the CFD workflow. For the Panasas parallel file 

system and storage, further tuning is developed in shared storage hardware components to optimize the parallel file 

system software architecture in order to offer an appliance-like implementation. 

3.  TRANSIENT CFD WITH PARALLEL IO 

The combination of scalable CFD application software, Linux HPC clusters and a parallel file system and storage, 

can provide engineers and scientists with new and significant performance advantages for transient CFD 

simulations. In recent studies, the advantages of FLUENT 12, STAR-CD v4, and CDP 2.4 with their parallel IO 

capability, demonstrated efficient scalability, total job turn-around time improvements of 2x and greater, and the 

ability to conduct high-fidelity yet cost-effective transient solutions that were previously impractical for industrial 

CFD consideration. 

The FLUENT, STAR-CD, and CDP models for these studies comprised cases that were relevant in size and flow 

features to current commercial and research CFD practice: 
 

• FLUENT capability study of a large external aerodynamics case of 111 million cells, modelled as 

transient with a DES model for performance evaluation from 64  to 256 Intel Xeon cores, and the writing 

of 20 GB of output data once per every 5 time steps, during 100 iterations. 
 

• STAR-CD transient LES study of a 17 million cell turbomachinery case received from an undisclosed 

customer for performance evaluation on increasing Intel Xeon cores from 64 to 256, with frequent time 

history writes of 48 GB of total output data during 300 iterations. 
 

• CDP transient LES study of a 30 million cell internal flow case of a Pratt & Whitney combustor single 

injector geometry , run on up to 512 cores of an SGI ICE Xeon cluster for scalability evaluation of a 50 

iteration restart with a solution write of 12 GB of total data. 
 

FLUENT: Collaboration between ANSYS and Panasas application engineers that began in 2005 has developed a 

parallel IO scheme based on MPI-IO under the MPI-2 standard. FLUENT parallel IO will be introduced in the 

FLUENT 12 release scheduled for 1H-2009 and will leverage several parallel file systems including Panasas’ 

PanFS. This development will permit FLUENT scalability for even heavy IO applications such as large steady state 

models with frequent checkpoints, or even more challenging, transient CFD that may require 100 or more solution 

writes per single simulation.  

The benefits of parallel IO for transient CFD were demonstrated with a production case of a FLUENT 

aerodynamics model of 111M cells, provided by an industrial truck vehicle manufacturer. Details of the model and 

results are provided in Figure 1. FLUENT 12 with parallel IO in the way of concurrent writes of local (partition) 
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solutions to the global solution data file on PanFS demonstrated a ~ 2x performance advantage in total time vs. 

FLUENT 6.3 on NFS and a conventional NAS system. 

In the case of 64 cores, the solver advantage of FLUENT 12 over 6.3 is only 4% and the total time benefit of 1.8x 

shown in Fig. 1 is a result of parallel IO speed-up. The FLUENT 12 solver advantage grows to 9% at 128 cores, and 

24% at 256 cores, which contribute to the growing benefits of total time improvements of 2.0x on 128 and 2.3x on 

256 cores for FLUENT 12 on PanFS vs. 6.3 on NFS. It is important to note that the performance of CFD solvers 

and numerical operations are not affected by the choice of file system, which only improves IO operations. That is, 

a CFD solver will perform the same on a given cluster regardless of whether a parallel or NFS file system is used. 

STAR-CD: This study uses the same STAR-CD v4.6 CFD software on the same cluster, but compares two different 

file systems. The model and Intel HPC environment details and the results are provided in Fig. 2 and Fig 3. From 64 

to 256 cores, solver times are the same regardless of file system, and all the total time gains come from parallel IO 

speed-up of STAR-CD on PanFS. STAR-CD uses an IO scheme whereby each core writes to its own output file of 

growing time history results, independent of other cores. The advantage of parallel IO from 64 to 256 cores grows 

from 24% to 85% and is consistent with results observed in the case of FLUENT 12 from 64 to 256 cores. 

CDP: This case also compares the performance of parallel PanFS vs. serial NFS on a serial NAS system for the 

same CFD software on the same cluster, and for up to 512 cores on an SGI ICE cluster. Details of the model, SGI 

HPC environment and results are provided in Fig. 4 and Fig. 5. Similar to results observed with the commercial 

CFD software, CDP improves both overall performance and parallel scalability in this case to the full 512 cores 

utilized in this study. Total time speed-ups range from a 36% advantage on 128 cores to 82% on 512 cores. 

4. CONCLUSIONS 

Joint studies conducted between research and industry organizations demonstrate that CFD software with parallel IO 

on a parallel file system can show full parallel benefit for transient simulations that are heavy in IO relative to 

numerical operations. The favourable results were conclusive for a range of commercial and research CFD software 

on a variety of Intel-based Linux HPC clusters with a Panasas parallel file system. Benefits to industry include an 

expanded and more common use of transient CFD in applications such as aerodynamics, aeroacoustics, reacting 

flows and combustion, multi-phase and free surface flows, and DES/LES turbulence, among other advanced CFD 

modeling and practices. 

5. FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Comparison of FLUENT 12 using parallel IO on PanFS vs. FLUENT 6.3 on NFS. 
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Fig. 2: Descriptions of the Intel HPC Cluster ENDEAVOR and STAR-CD Input Case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Comparison of STAR-CD v4.6 using parallel IO on PanFS vs. serial IO on NFS. 
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Fig. 4: Descriptions of the SGI ICE Cluster and CDP Input Case. 

 

 

 

 

 

 

 

 

 

Fig. 5: Comparison of CDP 2.4 using parallel IO on PanFS vs. serial IO on NFS. 
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Abstract: The capture of the correct transient behaviour of kinetically reduced local Navier-
Stokes (KRLNS) equation for incompressible flow was investigated. The numerical results 
obtained by the KRLNS equations for a lid-driven 2D square cavity flow and Taylor-Green 
vortex flow were compared with the artificial compressibility (AC) solutions. 
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1. INTRODUCTION 

Recently, an alternative thermodynamic description of incompressible fluid flows was suggested in the form of 
kinetically reduced local Navier-Stokes (KRLNS) equation and the capture of the correct time dynamics was 
studied [1].  
 In this paper, the numerical simulations of a lid-driven 2D square cavity flow and Taylor-Green vortex flow were 
presented and the results obtained by the KRLNS equations were compared with the artificial compressibility (AC) 
solutions. 

2. KINETICALLY REDUCED LOCAL NAVIER-STOKES EQUATION 

The classical incompressible Navier-Stokes equations consist of the equation for the velocity 

αββααββα upuuut ∂∂=∂+∂+∂
Re
1 ,  (1) 

and the incompressibility constraint 

0=∂ αα u ,  (2) 
where  is the fluid velocity,  is the pressure and Re is the Reynolds number. In the artificial compressibility 
(AC) method, the time derivative of the pressure is introduced into the continuity equation for coupling between the 
pressure and the velocity. The continuity equation (2) is written as 

u p

ααδ
upt ∂−=∂

1 ,  (3) 

where δ  is the artificial compressibility parameter. t  is an auxiliary variable that can be related to the physical 
time.  
 In the form of KRLNS equation, the pressure equation (3) is replaced by 

Gu
Ma

Gt ββαα ∂∂+∂−=∂
Re
11

2
,

2

2uGp +=  (4) 

where Ma is the Mach number, G  is the grand potential. Retaining the term Gββ ∂∂Re/1  is crucial for capturing 
the correct transient behaviour.  
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3. NUMERICAL RESULTS 

The numerical results obtained by the KRLNS equations for a lid-driven 2D square cavity flow and Taylor-Green 
vortex flow were presented and compared with the AC solutions. In the numerical method, a central difference 
scheme is used for the spatial discretization and the forward Euler explicit method is used in the time integration. In 
the case of cavity flow for Re = 400 on a uniform 6565 × Cartesian grid, comparison between KRLNS and AC 
solutions in the horizontal and vertical velocity profiles and the divergence αα u∂ as a function of time are shown in 
Fig. 1 and Fig. 2, respectively. The adjustable parameters in this case are Ma = 0.1,  for the KRLNS 
and

5105 −×=Δt
1=δ ,  for the AC. In the case of Taylor-Green vortex flow for Re = 1 on a uniform 

Cartesian grid, comparison of pressure component for KRLNS, AC and the exact solution is shown in Fig. 
3. Comparison of divergence as a function of time is shown in Fig. 4. The adjustable parameters are Ma = ,

 for the KRLNS and ,  for the AC. It was confirmed that the KRLNS method can 
capture the correct transient behaviour due to a smoothing effect of  in Eq. (4), providing that the 
divergence holds at the zero level, while the divergence in the AC method oscillates. 

310 −=Δt
3333 ×

210 −

410 −=Δt 410 −=δ 410 −=Δt
Gββ ∂∂Re/1

 In the next step, computational efficiency of the KRLNS method is investigated comparing with that of the artificial 
compressibility method introducing the pseudo time derivative of pressure and velocity, which is solved using the 
sub-iteration technique. 

Fig. 1: Comparison of horizontal and vertical velocity profiles in the cavity flow.
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Fig. 2: Comparison of divergence as a function of 
time in the cavity flow.

Fig. 3: Comparison of pressure component in the 
Taylor-green vortex flow. 

Fig. 4: Comparison of divergence as a function of 
time in the Taylor-green vortex flow. 
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1. Introduction 
 

In this work we developed an implicit monolithic formulation based on a fractional step method 
for solving the Incompressible Navier-Stokes Equations. The formulation is developed to obtain 
pressure stabilitys properties and mantain second order precision in time with a stagered solution 
available (Codina, 2001, Soto et al., 2004). We are using the Finite Element Method and an edge 
based data structure, which is computationaly atractive. The final algebraic system of equations is 
solved using PETSc, and the domains partitioning is obtained by ParMetis. Comunications between 
processors are maneged by MPI. A model application is presented to show the performance of the 
dsescribed formulation. 
 
2. Mathematical-Numerical Formulation 
 

The incompressible Navier-Stokes Equations, without thermical efects, in continuous form can be 
writeen like: 

( ) p
t

υ
∂

+ ⋅∇ − ∆ + ∇ =

∂

u u u u f   in ( )0, tΩ×                         (1) 

0∇ ⋅ =u                                       in ( )0, tΩ×                                           (2) 

where Ω  is the spatial fluid domain, t is the time variable, (0,t) is the time interval, u is the velocity 
field, υ  is the kinematic viscosity, p is the pressure, f is the external force vector, ∇  is the gradient 
operator and ∆  is the laplacian operator. The Dirichlet and Neuman boundary conditions are: 

=u u  in duΓ , p p=  e ⋅ =n  t  in nuΓ               (3) 

where   is the viscous stress tensor, n is the unit outward normal vector, and t is the surface stress or 
traction. Na upper bar refer to a prescribed value. 

In which the physical boundary was divided in two non overlaping parts duΓ and nuΓ where the 
Dirichlet and Neuman boundary conditions are prescribed to each equation, respectivelly. Initial 
conditions must be known in the whole domain at the initial time. 

In this work, a Fractional Step method based in a LU factorization (Codina, 2002, Henriksen et al., 
2002, Perot, 1993) was applied. In this method the final system is analogous to the method proposed 
by Chorin in 1967, and Temam in 1969, that applies a Helmholtz decomposition. 

The final discrete system is obtained by using a θ  method in time, resulting in a trapezoidal 
discretization, and a Finite Element Method for the spatial discretization(Gresho et al., 1998, vol 1 & 
2). The stabilization of the advective and the gradient pressure terms are obtained with an orthogonal 
projection of these terms in a finite element space (Codina, 2000, Codina, 2002, Soto et al., 2001). 

The variational formulation (Soto et al., 2001, Soto et al., 2004) can be written as: knowing n
hu  

and n
hp , find ( )

1111 ,,, ++++ n
h

n
h

n
h

n
h p u  in hhhh VVQV ~~

××× , such that: 
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( ) ( )h
in

h
in

hh
n
h

in
h vv

t
,,

1 ,1,1,1 θ

δ

+−++

∇⋅+− uuuu  + ( ) ( )h
in

hh
in

h vpv ⋅∇−∇∇
−++ ,, 1,1,θ

υ u   

+ ( )( )
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( ) ( )( )h

in
h

inin
hh

in
h

in
h qpqppt ∇−∇+∇∇−∇

−+−++−++ ,, 1,11,1,11,1,1 βτδ  = - ( )h
in

h q,,1+

⋅∇ u                                  (5) 
 

( ) ( )h
in

h
in

hh
in

h vv ~,~, ,,, θθθ +++

∇⋅= uu                 (6) 
 

( ) ( )h
in

hh
in

h vpv ~,~, ,1,1 ++

∇=                                          (7) 
 

( ) hhhhhhhh Qvvqv VVV ~~~,~,, ×××∈∀  
 

where 1 1 1 1, , ,n n n n
h h h hp+ + + +u    are the velocity vector, pressure, advective projection term and 

pressure gradient projection term, respectively, and hhhh Q VVV ~~
×××  are the corresponding finite 

element functionals spaces, respectivelly. The superscripts n and i refer to time step and Gauss-Seidel 
iterations counter in each time step, the subscript h refers to discrete variables, t is the size of time 
step,  is the stabilization parameter based on pressure gradient, limited to the interval I=[0 1], taking 
values close to 1 where the pressure field is smooth, and close to 0 in flow regions with sharp pressure 
gradients (Soto et. al., 2004),  is the stability and convergence parameter,  is the time integration 
parameter (for instance  = 1.0 Backward Euler e  = 0.5 Crank-Nicholson), h, hν , qh, are the finite 
element wheight functions to velocity, advective and pressure gradient projections and pressure, 
respectivaly. The variables   and   were obtained by LU factorization of the system. The functional 
form (·,·), is defined by: 

( ),a b a bd
Ω

= ⋅ Ω , ( ),a b a bd
Γ

Γ

= ⋅ Γ               (8) 

 
3. Edge Based Data Structure 
 

We are using an edge based data structure, which is advatageous in terms of CPU time, because  
most of the discrete terms do not need to be re-computed at each iteraction by looping across the 
elements. The local conservation and symmetry are enforced at the dicrete level calculating only the 
non-diagonal terms and by computing the diagonal one as the subtraction of the same-row non-
diagonal terms (Soto et al., 2004). The final edge based terms are obtained replacing the standard loop 
over the elements to edge loop, to exemplify, consider the first term of the Eq. (5), which have 
difusive transport character, and eliminating sub/super-index, yelds: 

( ),p N∇ ∇  = p Nd
Ω

∇ ⋅∇ Ω  =  
⊃ Ω

=Ω∇⋅∇

JE
JEJI pdNN

E

ˆ  

( )

dim

1 1

ˆ ˆ
E

m n
JI

E I J
S E IJ k k k

NN
d p p

x x
= ⊃ =Ω

  ∂∂ 
Ω −  

∂ ∂   
    = ( )

=

−

m

S
JIIJ ppC

1

ˆˆ                                          (9) 

where IJC  is associated to edge IJ. 
 Note that the final term of Eq. (9) is naturally conservative, it means that the difusive transport 

from node I to node J is equal to the difusive transport from node J to node I.  
 
4. Parallel Computing Issues 
 

Problems envolving fluid flow have characteristics extremely complex, and require considerable 
computational effort. They have non linear, tansient, tridimentional characteristics. In this context, the 
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use of the parallel computing is necessary to make possible simulations of fuid flows in a satisfactory 
precision and time. 

A parallel computational paradigma in CFD (Computational Fluid Dynamics) is the domain 
decomposition, that deals with partitioning of the whole domain in a set of non-overlapping 
subdomains, and each subdomain is associated to one processor. In this work we are using ParMetis 
(Karypis et al., 2003), which is a parallel library based on MPI (Pacheco, 1997) that implements a 
variety of algorithms for “optimal” partitioning and re-partitioning applicable to unstructure mesh 
discretizations. In this case, the comunications between processors are drastically reduced. The 
partitioning, in this work is made by edges, so that an edge belongs to only one processor and the 
interfaces are represented by nodes.  

Below is presented an example of mesh partitioning. 
 

   
               (a)               (b) 

Figure 1. Mesh partitioning: (a) initial, (b) with Parmetis. 
 
 Figure 1 shows a tridimensional mesh with an initial partitioning, based on a subdivision of the 
edges by the number of processores, and the same mesh after ParMetis re-partitioning. Note that 
interfaces were reduced after ParMetis aplication, minimizing necessary comunications between 
processors. We salient that all parallel algebraic system of equations solved using the PETSc 
(http:/www-unix.mcs.anl.gov/petsc/petsc-as/documentation), which is a suite of data structures and 
routines that provide the building blocks for the implementation of large-scale applications. 

 
5. Parallel Tests 
 

In terms of performance of the parallel program many tests were made to verify the efficiency in 
terms of computational costs reduction. One of these tests refers to speed-up computation, that contrast 
the relative processing time with number of processors when the number of processors increased. 

In this work, processing time for only one processor was obtained by linear extrapolation of the 
processing time obtained with two processors, because we were not able to perform data pre-
processing using only one processor due to lack of memory. 

The mathematical expression utilized to determinate speed-up is: 
( )

( , )
( , )
refT n

S n p
T n p

=                           (10) 

where n  represents  the load of work, p  is the number of processors, ( , )S n p  is the  speed-up, 

( )refT n  is the execution reference time obtained with one processor, and ( , )T n p  is the execution 

time of the algorithm with p processors.  
The numerical example analyzed was the classical lid-driven cavity flow [Ghia et al., 1982]. 

Figure 2 shows the geometry, where 1L = . 
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Figure 2. Geometrical and physical domain. 

 
Boundary conditions: 
     - top: unitary velocity profile prescribed at x direction. 
     - left and right side: viscous tensor prescribed zero at x and z directions, and velocity 

component at y direction prescribed zero. 
     - front, back and bottom: non-slip condition. 
For Re = 1, results were compared with those found in literature with good agreement. The 

adopted mesh has 1.149.802 nodes, 7.124.082 tetrahedrical elements and 8.398.525 edges, and was 
partitioned among 2, 4, 8, 12, 16, 20 and 32 processors. Figure (3-a) and Figure (3-b) show the 
partitions to 32 subdomains and velocity field showing the central vortex, respectively. 

            
(a)                                                                                 (b) 

Figure 3. 32 subdomains and velocity field. 
 
The parallel performance is shown in the Fig. (4). Where speedup obtained has been compared 

with the ideal speedup. 

 
Figure 4. Speedup slope. 

 
We highlight that all simulations were analyzed in the “Núcleo de Atendimento em Computação 

de Alto Desempenho” (NACAD) of COPPE/UFRJ (http://www.nacad.ufrj.br/), which is a laboratory 
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of parallel computing applied to engineering and sciences problems, and hold a cluster called Uranus 
(SGI Altix ICE 8200), with the following configuration: 

-    64 CPUs Quad Core Intel Xeon: 256 Colors; 
-    Memory: 512 Gbytes RAM (distribuited); 
- HD Storage: SGI InfiniteStorage NAS (32 TBytes); 
- Network: Inifiniband and Gigabit; 
- Operational System: Suse Linux Enterprise Server + SGI ProPack; 
-   Compiles: Intel and GNU (Fortran-90 and C/C++) with OpenMP e MPI  support.  

 
6. Conclusions 
 

An implicit monolithic edge based scheme was presented to solve the Incompressible Navier-
Stokes Equations. The final mathematical formulation was discretized using Finite Element Method 
and Fractional Step Method and implemented on parallel computers. This formulation have stabilities 
properties for the pressure and advective terms based on theirs projections in finite element spaces. 
The preliminary numerical results indicate that the formulation and implementation is efficient to deal 
transient incompressible fluid flows. Further investigation are being performed and a more detailed 
study on the performance of the developed system will be presented soon. 
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ABSTRACT 

Today, production simulations are routinely deployed on high performance computing resources 
using parallel codes to resolve complex geometries with multilevel data hierarchies [1]. The 
modelling of flow is becoming more advanced, with recent research covering diverse velocity 
variation in a domain, ranging from low-speed to supersonic flow in micro-to-macro sized 
geometries [2]. Further, CFD research is developing the algorithms necessary for studying 
multi-physics problems, coupling the effects from other domains such as fluid-structure 
interaction, aerodynamic-dynamic coupled analysis, and CFD-MD coupling [3]. The 
development and use of a problem solving environment can be invaluable in addressing modern 
CFD research topics that inherently involve high-end computation, multi-scale and multi-
physics analysis, and interdisciplinary collaboration. First, a framework acts as a gateway to the 
latest computing infrastructure, including access to supercomputers and use of latest computer 
scientific drivers/software. Also, frameworks facilitate interdisciplinary and multi-physics 
collaborative endeavours by providing integrated interfaces, programming standards and 
modular code development. 

As one of a set of general-purpose problem solving environments, the Cactus framework [4] has 
been used for various scientific simulations since 1997, including astrophysics [5,6] and CFD 
[7,8,9] Cactus is basically composed of a central core (called the “flesh”) and application 
modules (called “thorns”), which include user-developed scientific code, parallel I/O, 
checkpointing.  Cactus’ modular structure enables collaborative code development between 
different groups, and the central core along with computational tookits supports automatic 
parallelization, seamless development and deployment on modern computer architectures and 
easy access to many cutting-edge software technologies such as Globus, HDF5, PETSc library, 
and advanced visualization tools. In its initial application to the field of CFD, researchers have 
already successfully conducted parallel computations of compressible or incompressible flow 
fields on structured domains, by implementing their numerical algorithms, modifying existing 
Cactus standard modules, and fully utilizing the Cactus infrastructure such as automatic 
parallelization and use of the PETSc solvers. 

However, the initial Cactus-based CFD codes had limitations. Since these codes were developed 
individually, their application thorns do not follow any programming standard or coordinated 
development. Thus, the numerical modules employed, such as flux schemes, time evolution 
routines, I/O interfaces are not easily portable to other applications; boundary condition 
modules are case-specific. Moreover, current applications have been restricted to single-block 
geometric problems as seen in Figure 1, due to the absence of multi-block data structure support 
in the Cactus driver. 
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a) Compressible CFD Simulation on a Single-block Domain 
(Inviscid Analysis on a Simplified Wing-body Configuration at Ref. 8) 

b) Incompressible CFD Simulation on a Single-block Domain 
(Pollutant Dispersion Simulation on a Cartesian Mesh at Ref. 9) 

Figure 1. Cactus-based CFD Applications 

From the interest demonstrated thus far in the use of Cactus for CFD applications, and the 
obvious benefits of shared development of standard components, an initiative has been 
undertaken to develop a CFD Toolkit within Cactus. This toolkit is being designed to fully 
utilizes the benefits of the Cactus framework such as numerical library supports and automatic 
parallelization by drivers, and includes additional drivers and modules specifically developed 
for CFD applications. New modules include standard I/O routines for CGNS mesh reading and 
PLOT3D format output, global variable handling on flow (primitive and conservative) variables 
and geometric variables (mesh points and metric terms), improved data structure supporting 
multi-block data structure, and general boundary condition modules. Of these elements, some 
modules such as boundary condition and I/O can be easily implemented by minor modification 
on existing Cactus thorns, and some are under development now. 

A detailed schematic of the Cactus CFD toolkit including a CFD flowchart is shown in Figure 2. 
Of the CFD modules described on the flowchart, a red solid box indicated users’ thorns: initial 
condition with flow parameter registration, determination of local/minimum time scale and flux 
schemes. Black dash boxes indicate system-supported modules by function calls inside a Cactus 
CFD toolkit: mesh reader and coordinate transformation routine will capture geometric features 
from users’ prepared CGNS-format mesh file, boundary conditions will be directly imposed by 
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user-specified function calls, flow properties automatically updated by declaration on timelevel 
of variables, and output interface will finally return TecPlot-compatible PLOT3D data. 
Regarding time integration, users can choose either to use PETSc/Hypre numerical libraries or 
to adopt their own time integration programming. A multi-block driver along with the Carpet 
driver will control data structure and parallelization during this simulation, such as registering 
and managing variables, domain partitioning, and communication control. 

Figure 2. Schematic of a Cactus CFD Toolkit 

Incompressible and compressible flow analyses are going to be performed using the resulting 
Cactus CFD toolkit. An incompressible code under validation uses a cell-entered finite volume 
method on a block structured curvilinear grid. The transformed Navier-Stokes equations are 
discretized using a second order upwind-biased scheme for the convective terms, second order 
central differencing for diffusion terms and a second order Adams-Bashforth scheme for time 
integration. A fractional step approach is used where an intermediate velocity field is obtained 
as a first step, a pressure field is then obtained via a pressure Poisson equation and the 
intermediate velocity field updated for the pressure gradient. To solve for the intermediate 
velocity field, a hybrid formulation on a curvilinear grid [10] is used where all field variables 
and pressure are stored at the cell-center collocated location, but the velocity field is updated at 
the staggered cell-face locations. Currently the Hypre linear solver library is being used to solve 
system of linear equations in parallel. A number of validation studies have been performed to 
demonstrate the convergence and accuracy of the approach. A compressible Cactus code has 
been developed and used for a number of applications, and details on numerical approaches are 
also described in Refs. 7 and 8. 
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Multi-core architectures with an increasing number of cores are beginning to dominate 
compute platforms for scientific and engineering simulations. One potential means of 
programming these systems includes combining MPI with OpenMPI in a hybrid model. In this 
tutorial, we describe the ways in which the hybrid model can be programmed, and discuss its 
performance compared with pure MPI. We also review current multi-core architectures and 
provide an introduction to alternate languages such as Co-array Fortran (CAF) and Unified 
Parallel C (UPC). We present benchmark results on several platforms and identify which 
applications are likely to benefit from hybrid programming models. 
 
*author only—not speaking 
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