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Abstract. We developed a two-dimensional lattice Boltzmann method (LBM) to solve
conjugate heat transfer (CHT) problems on GPU. The code solves the energy equations on
solid and fluid regions simultaneously without any specific treatment along the solid-fluid
interface. Each region is mapped with a uniform Cartesian mesh that consists of D2Q9
lattices. The computations we performed on CPU and GPU showed that the computations
on GPU are 12 times faster than the one performed on the CPU. In order to reveal the
main reason/s of this discrepancy, we tracked and then evaluated the computational
times for the critical stages of the developed solver. Our analyses show that data transfer
from device to host costs 95% of the whole computational time. On the other hand,
computational time of the collision stage takes 50% of the computational time that is
required for the developed lattice Boltzmann solver to run on CPU.

1 INTRODUCTION

The growing demand to solve high complex problems challenges manufacturers to con-
tinuously increase floating points operations (FLOPs) per unit time of modern Central
Processing Units (CPUs) and Graphics Processing Units (GPUs). Recent GPU cards,
such as NVidia TESLA V100, can reach about 7000 gigaFLOPs per unit time, while
modern generation Intel Xeon Platinum 8180 are showing performances of about 2200
gigaFLOPs per unit time. Therefore, to execute a high number of parallel calculations
on a massive quantity of data, a GPU card is preferred.

The lattice Boltzmann method, introduced by McNamara and Zanetti [1] in 1998, is an
explicit method that allows any user to take advantage of massive parallel computation via
GPUs [2]. Recently LBM was used to solve several types of flow problems on GPU, such
as flows through porous media [3], conjugate heat transfer [2, 4, 5], turbulent flows [6],
and etc.

In order to model heat exchange between solid and fluid in contact properly, one needs
to solve energy equation on both solid and fluid region [2]. Spinelli et al. [2, 4] and
Tarokh et al. [5] proved that LBM is capable of solving CHT problems, showing perfect
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agreements with classic FVM results. Spinelli et al. studied the effect of solid to fluid
conductivity ratio, Prandtl, and Reynolds numbers on a backward facing step flow over
a thick wall.

The objective of this study is to analyze the computational time of the conjugate
heat transfer lattice Boltzmann method implementation on GPU. We also compare the
computational time of the critical stages of LBM between GPU and CPU versions.

2 LATTICE BOLTZMANN METHOD

The base of LBM is the gas kinetic theory, where the Boltzmann equation describes
the evolution of the distribution function for each lattice. From the discrete Boltzmann
equation, we obtain two new equations, which are the streaming and the collision stage,
as shown in Reference [2]. The collision equation is as below

f̃i(~r, t) = fi(~r, t) + ωm [f eq
i (~r, t) − fi(~r, t)] (1)

In the above equation, f eq(~r, t) is the equilibrium distribution function, that is computed
at the previous time stage. The streaming for each direction i is as follows

fi(~r + ~ci∆t, t+ ∆t) = f̃i(~r, t) (2)

In Eq. 1, we use an equilibrium distribution function that is second order accurate in
space [7].

f eq
i = wiρ

[
1 +

~ci · ~V
c2s

+ 0.5
(~ci · ~V )2

c4s
− 0.5

~V · ~V
c2s

]
(3)

For each lattice streaming direction, i the particle velocity, c and the weighting factor,
w for D2Q9 model, as well as alternative models for 2D applications are described in
Reference [7]. Alongside streaming and collision, LBM has two more stages, which are
updating the boundary conditions and calculation of macroscopic quantities.

Evaluation of the energy equation follows the same procedure of Reference [2]. We set
a new distribution function g as in Eq. 3, where T substitutes the density. Moreover, the
collision frequency, ω is related to the thermal diffusivity, α instead of ν.

α =
∆x2

3∆t
(ωe − 0.5) (4)

3 GPU IMPLEMENTATION

The collision stage, represented by Eq. 1, is coded on GPU as in List. 1. In order
to code collision stage on CPU, one would use two for loops to swap the matrix that
stores distribution function values on the CPU memory. Whereas on GPU, the if clause
coupled with blockIdx, blockDim, threadIdx variables assures that the thread points to
a matrix element within the matrix margins.
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Listing 1: A sample code for collision stage on GPU

__global__ void Collision_GPU(float *f, float *rho, float *w,

float *u, float *v, float *cx, float *cy, float omega , int Lx,

int Ly, int Lz, float cs, float dt)

{

int k = blockIdx.z * blockDim.z + threadIdx.z;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < Lx && j < Ly && k < Lz) {

float feq = rho[j][i] * w[k] * (1. + 1./(cs*cs) * (u[j][i

] * cx[k] + v[j][i] * cy[k]));

f[k][j][i] = f[k][j][i] + omega * (feq - f[k][j][i]);

}

}

In this study, we use NVIDIA Quadro K620 as GPU card.

4 RESULTS

We solved the well-known benchmark problem of a backward facing step duct over a
thick wall both on GPU and on CPU. The details of the problem are the same as in
Reference [2], where we assign three different constant solid to fluid thermal conductivity
ratios which are 10, 50 and 100.
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Figure 1: Interface temperature distributions for the backward facing step flow at Re = 200, for kr =
10, 50, 100

Fig. 1 shows the interface temperature distributions for Re = 200, which are obtained
with three different thermal conductivity ratios (10, 50 and 100). Our results shows
that on average the GPU spends 0.109s to complete one cycle iteration, while the CPU
computes one iteration in 1.206s. Tab. 1 contains the computational time for the critical
stages of the method. Particularly, the GPU version spends 95% of its execution time by
transferring data from device to host. The most dispendious stage for CPU is collision,
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which takes about 50% of the total computational time. Whereas the GPU spends 0.079%
of its computational time to compute the collision stage. In conclusion, our CHT LBM
implementation on GPU is twelve times faster than its CPU version.

Table 1: GPU and CPU execution time comparison in percentage

%t Streaming Collision BC ρ, V, T D-D Data Tra. H-D Data Tra. Other
CPU 1.586 · 101 5.011 · 101 3.142 · 10−2 3.360 · 101 4.708 · 10−2 — 3.515 · 10−1

GPU 6.246 · 10−3 7.924 · 10−3 5.204 · 10−2 6.061 · 10−3 1.003 · 10−2 9.560 · 101 4.318 · 10−1

5 CONCLUSIONS

We compared the GPU and CPU computational costs of the algorithm by solving
the well-known backward facing step flow over a thick wall on a uniform 2D Cartesian
mesh. We observed that the collision process is the most dispendious for CPU in terms
of computational cost, while for GPU the update of boundary conditions process is the
slowest. The results show that running the CHT LBM code on GPU accelerates the solver
twelve times.
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