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Abstract. Commonly, the development of scientific computing software follows a stencil-
based approach: the numerical methods and algorithms are introduced into computing
systems through stencil data structures and sweeps (i.e. traversing element by element
the mesh and performing the required computations). Making an effort to remove the
dependencies of the kernels on the numerical method may greatly facilitate the portability.
Thus, the numerical method must be fully integrated into the data structures somehow
so that computing kernels can operate independently. In this work, we propose a pure
virtual approach for managing the architecture-specific data structure and computing
kernel implementations while providing the users with a unique interface.

1 INTRODUCTION

Continuous enhancement in hardware technologies enables scientific computing advanc-
ing incessantly to reach further aims. After hitting petascale speeds in 2008, several organ-
isations and institutions began the well-known global race for exascale high-performance
computing (HPC). Thenceforth, hardware developers are facing two significant challenges.
Firstly, the energy efficiency of the exascale systems must be increased by two orders of
magnitude. Secondly, there is an increasing demand for higher memory bandwidth. The
common FLOP-oriented architectures (i.e. very high and growing FLOPS to memory
bandwidth ratios) are not efficiently dealing with most of the algorithms in scientific
computing, they barely reach 3% of their peak as shown by the HPCG Benchmark [1].
Therefore, massively-parallel devices of various architectures are being incorporated into
the newest supercomputers, leading to an increasing hybridisation of HPC systems.

In this context of accelerated innovation, the software portability and efficiency be-
come of crucial importance. The computing operations that form the algorithm, the
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so-called kernels, must be compatible with distributed- and shared-memory MIMD paral-
lelism and, more importantly, with stream processing, which is a more restrictive parallel
paradigm [2]. Consequently, the fewer the kernels of an application, the easier it is to
provide portability.

Commonly, the development of scientific computing software follows a stencil-based
approach: the numerical methods and algorithms are introduced into computing systems
through stencil data structures and sweeps (i.e. traversing element by element the mesh
and performing the required computations). In other words, both data structures and
computing kernels integrate the numerical method and algorithm. Despite being a very
intuitive and versatile approach [3, 4], it hampers the design of applications composed
of a reduced number of computing kernels and introduces an enormous complexity when
porting codes.

Making an effort to remove the dependencies of the kernels on the numerical method
may greatly facilitate the portability. Thus, the numerical method must be fully integrated
into the data structures somehow so that computing kernels can operate independently.
For instance, the platform portability is achieved in [5] by casting all the operations as
matrix multiplications and point-wise operations. Following an algebra-based approach,
we replace the traditional stencil data structures and sweeps by algebraic data structures
and kernels. The discrete variables are stored in vectors and the discrete operators in
sparse matrices. Thus, having the numerical method integrated only on the data, the
computing kernels become independent. For instance, the gradient of a scalar field could
be computed using several different numerical methods but a single kernel: the sparse
matrix-vector multiplication.

Even having a modular code or framework without dependencies on the numerical
method, the management of different implementation types is still challenging. In our
previous work [6], we presented the HPC2 (Heterogeneous Portable Code for HPC). It
is a fully-portable, algebra-based framework capable of heterogeneous computing with
many potential applications in the fields of computational physics and mathematics. As
a result, the algorithm of the time-integration phase of Direct Numerical Simulations
(DNS) of incompressible turbulent flows relies on simple algebraic kernels such as the
matrix-vector multiplication and the linear combination of vectors. Moreover, if the
majority of kernels represent linear algebra operations, then standard optimised libraries
(e.g. ATLAS, clBLAST) or specific in-house implementations can be used and easily
switched.

In this work, we propose a pure virtual approach for managing the architecture-specific
data structure and kernel implementations while providing the users with a unique inter-
face.

2 A PURE VIRTUAL APPROACH FOR MANAGING PLATFORM PORTA-
BILITY

Let us assume we have a framework that provides us with a mesh and discrete fields
and differential operators (without going into detail about the numerical method used to
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discretise). Then consider, for instance, the evaluation of the heat flux as

q = −k∇T. (1)

Assuming the discrete gradient operator and temperature field are given and, therefore,
the size of both the input and output vector spaces are known, we want to be able to
write the Equation 1 as

q = - k*G*T;

where T is the discrete temperature field represented as an element of the vector space the
gradient maps from, G is the discrete gradient operator, k is the thermal conductivity and
q is the discrete heat flux represented as an element of the vector space the gradient maps
to. Besides, we want to run the model on, say, both a laptop and a hybrid supercomputer
without changing any line of the code. Thus, the variables and operators must rely on
data structures and kernels that are appropriately managed in a lower-level code block.

We propose the solution depicted in Figure 1. The three lowest-level objects, vVector,
vMatrix and vUnit, are pure virtual classes (i.e. they can not be instantiated but
are used as base classes); derived classes are created for OpenMP, OpenCL and CUDA
implementations. The derived vVector and vMatrix classes contain the necessary
elements to store all the data of a vector and a sparse matrix. The derived vUnit classes
contain methods to manage the memory of the derived vVector and vMatrix, and also
kernels to operate them.

mUnit

vUnit

mMatrix

vMatrix

mVector

vVector

Core-Block

Manager

Figure 1: Diagram of classes in our pure virtual approach for managing platform portability.

To deal with heterogeneous computing using a multilevel implementation approach [2,
7] (i.e. the local partition of the computational domain within an MPI process is fur-
ther distributed among its available computing hardware, namely host and devices), we
need a handler that allows working with groups of different derived classes, one for each
computing device. The three following objects, mVector, mMatrix and mUnit are the
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handlers that contain a set of pointers to vVector, vMatrix and vUnit base classes
respectively. Finally, the Manager is the object in charge of managing the handlers of
virtual classes. Given a multilevel partition, the Manager can build and operate objects
of type mVector and mMatrix using mUnit.

The Manager object is unique for every MPI process and is the only interface a user
needs to use the data objects and kernels. Consequently, if the multilevel parallelisa-
tion is not requested, the handlers are built with only one derived class. Currently, the
Manager is set up at construction by command-line parameters (further work should
allow the Manager to have an automatic set up depending on the available hardware
and its characteristics). Therefore, considering that we have a higher-level code block
that provides with the required INPUT data for simplicity (i.e. the mesh properties, the
discrete gradient operator and the discrete temperature field), the following lines of code
may be run on, say, both a laptop and a hybrid supercomputer:

Manager M;

double k = INPUT_K;
mVector q = M.CreateVector(INPUT_FACES);
mVector T = M.CreateVector(INPUT_CELLS, INPUT_T);
mMatrix G = M.CreateMatrix(INPUT_FACES, INPUT_CELLS, INPUT_G);

q = - k*G*T;

where INPUT_K is the value of thermal conductivity, INPUT_CELLS and INPUT_FACES
are the sizes of the input and output vector spaces of the operator G, and INPUT_T and
INPUT_G are the values of the temperature field and gradient operator respectively.

In the conference, we are going to present the pure virtual approach in detail and
performance analysis on different computing systems. Additionally, we are going to show
its application to CFD simulations.
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